Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen fertilizer remains in soils and leaks towards groundwater for decades, researchers find

22.10.2013
Long-term legacy of past fertilizer applications must be considered in reducing nitrate contamination of aquatic ecosystems, study indicates

Nitrogen fertilizer applied to crops lingers in the soil and leaks out as nitrate for decades towards groundwater – "much longer than previously thought," scientists in France and at the University of Calgary say in a new study.

Thirty years after synthetic nitrogen (N) fertilizer had been applied to crops in 1982, about 15 per cent of the fertilizer N still remained in soil organic matter, the scientists found.

After three decades, approximately 10 per cent of the fertilizer N had seeped through the soil towards the groundwater and will continue to leak in low amounts for at least another 50 years.

The study was led by researcher Mathieu Sebilo at the Université Pierre et Marie Currie in Paris, France, and by Bernhard Mayer in the U of C's Department of Geoscience, and included several research organizations in France.

Their paper, "Long-term fate of nitrate fertilizer in agricultural soils," was published this week in the Proceedings of the National Academy of Sciences of the United States of America.

The findings show that losses of fertilizer N towards the groundwater occur at low rates but over many decades, says Mayer, U of C professor of geochemistry and head of the Applied Geochemistry Group.

That means it could take longer than previously thought to reduce nitrate contamination in groundwater, including in aquifers that supply drinking water in North America and elsewhere, he says.

"There's a lot of fertilizer nitrogen that has accumulated in agricultural soils over the last few decades which will continue to leak as nitrate towards groundwater," Mayer says.

Canada and the U.S. regulate the amount of nitrate allowed in drinking water. In the 1980s, surveys by the U.S. Environmental Protection Agency and the U.S. Geological Survey showed that nitrate contamination had probably impacted more public and domestic water supply wells in the U.S. than any other contaminant.

Mayer is an internationally recognized expert in the use of stable isotopes to track contaminants in the environment.

The French-U of C study is the first that tracks, using stable isotope "fingerprinting," the fate of fertilizer N remaining in the soil zone over several decades.

The research team used a stable isotope of nitrogen, N-15, as a tracer to track fertilizer nitrogen applied in 1982 to sugar beet and winter wheat crops on a pair of two-metre-square plots at a site in France.

Over the 30-year study, the researchers measured the amount of N-15 labelled fertilizer N taken up by plants and they quantified the amount of fertilizer N remaining in the soil.

The novel aspect of their study was that they subsequently determined the long-term fate of this fertilizer N 'pool' retained in the soil. Their measurements of seepage water from locations two metres deep in the soil revealed the amount of fertilizer nitrate leaking towards the groundwater.

The team found that 61 to 65 per cent of the N-15 fertilizer applied in 1982 was taken up by the sugar beet and wheat plants over the 30-year study.

However, 32 to 37 per cent of the fertilizer N remained in the soil organic matter in 1985 or three years after application, while 12 to 15 per cent still lingered in the soils after three decades.

Between eight to 12 per cent of the fertilizer N applied in 1982 had leaked in the form of nitrate toward groundwater during the 30 years, and will continue to leak at low rates "for at least another five decades, much longer than previously thought," the study says.

The scientists predict that about 15 per cent of the initially applied fertilizer N will be exported from the soils towards the groundwater over a time span of almost one century after the 1982 fertilizer application.

Mayer speculates that if the same research were done in Alberta, the findings would be similar in terms of fertilizer uptake by plants and nitrogen retention in the soils, although Alberta's comparatively dry climate and different geology might slow the rate of nitrate seeping towards the groundwater.

Nitrate contamination of aquatic ecosystems can be reduced by farmers following the 4Rs of nutrient stewardship: applying the right fertilizer source at the right rate, the right time and the right place (see http://www.nutrientstewardship.com/what-are-4rs).

For the research abstract, visit: http://www.pnas.org/content/early/2013/10/15/1305372110

Marie-Helene Thibeault | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>