Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen fertilizer remains in soils and leaks towards groundwater for decades, researchers find

22.10.2013
Long-term legacy of past fertilizer applications must be considered in reducing nitrate contamination of aquatic ecosystems, study indicates

Nitrogen fertilizer applied to crops lingers in the soil and leaks out as nitrate for decades towards groundwater – "much longer than previously thought," scientists in France and at the University of Calgary say in a new study.

Thirty years after synthetic nitrogen (N) fertilizer had been applied to crops in 1982, about 15 per cent of the fertilizer N still remained in soil organic matter, the scientists found.

After three decades, approximately 10 per cent of the fertilizer N had seeped through the soil towards the groundwater and will continue to leak in low amounts for at least another 50 years.

The study was led by researcher Mathieu Sebilo at the Université Pierre et Marie Currie in Paris, France, and by Bernhard Mayer in the U of C's Department of Geoscience, and included several research organizations in France.

Their paper, "Long-term fate of nitrate fertilizer in agricultural soils," was published this week in the Proceedings of the National Academy of Sciences of the United States of America.

The findings show that losses of fertilizer N towards the groundwater occur at low rates but over many decades, says Mayer, U of C professor of geochemistry and head of the Applied Geochemistry Group.

That means it could take longer than previously thought to reduce nitrate contamination in groundwater, including in aquifers that supply drinking water in North America and elsewhere, he says.

"There's a lot of fertilizer nitrogen that has accumulated in agricultural soils over the last few decades which will continue to leak as nitrate towards groundwater," Mayer says.

Canada and the U.S. regulate the amount of nitrate allowed in drinking water. In the 1980s, surveys by the U.S. Environmental Protection Agency and the U.S. Geological Survey showed that nitrate contamination had probably impacted more public and domestic water supply wells in the U.S. than any other contaminant.

Mayer is an internationally recognized expert in the use of stable isotopes to track contaminants in the environment.

The French-U of C study is the first that tracks, using stable isotope "fingerprinting," the fate of fertilizer N remaining in the soil zone over several decades.

The research team used a stable isotope of nitrogen, N-15, as a tracer to track fertilizer nitrogen applied in 1982 to sugar beet and winter wheat crops on a pair of two-metre-square plots at a site in France.

Over the 30-year study, the researchers measured the amount of N-15 labelled fertilizer N taken up by plants and they quantified the amount of fertilizer N remaining in the soil.

The novel aspect of their study was that they subsequently determined the long-term fate of this fertilizer N 'pool' retained in the soil. Their measurements of seepage water from locations two metres deep in the soil revealed the amount of fertilizer nitrate leaking towards the groundwater.

The team found that 61 to 65 per cent of the N-15 fertilizer applied in 1982 was taken up by the sugar beet and wheat plants over the 30-year study.

However, 32 to 37 per cent of the fertilizer N remained in the soil organic matter in 1985 or three years after application, while 12 to 15 per cent still lingered in the soils after three decades.

Between eight to 12 per cent of the fertilizer N applied in 1982 had leaked in the form of nitrate toward groundwater during the 30 years, and will continue to leak at low rates "for at least another five decades, much longer than previously thought," the study says.

The scientists predict that about 15 per cent of the initially applied fertilizer N will be exported from the soils towards the groundwater over a time span of almost one century after the 1982 fertilizer application.

Mayer speculates that if the same research were done in Alberta, the findings would be similar in terms of fertilizer uptake by plants and nitrogen retention in the soils, although Alberta's comparatively dry climate and different geology might slow the rate of nitrate seeping towards the groundwater.

Nitrate contamination of aquatic ecosystems can be reduced by farmers following the 4Rs of nutrient stewardship: applying the right fertilizer source at the right rate, the right time and the right place (see http://www.nutrientstewardship.com/what-are-4rs).

For the research abstract, visit: http://www.pnas.org/content/early/2013/10/15/1305372110

Marie-Helene Thibeault | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>