Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minimising water use, maintaining productivity

07.01.2014
As the climate warms up, more and more farmers in Switzerland need to irrigate their crops. This is problematic because many rivers carry less water. If the increase in water use is limited, agricultural production will not be significantly lowered. This conclusion was reached on the basis of models created in a project of the National Research Programme "Sustainable Water Management" (NRP 61).

Climate change will lead to regional water shortages. If the use of river water is not regulated, both water quality and biodiversity could be negatively affected. Overuse can be avoided by redirecting water from larger bodies of water via pipes and distribution networks. This comes at a considerable price and has an impact on the environment.

Testing options on the basis of case studies

Researchers of an NRP 61 project investigated alternatives not in terms of sourcing more water but rather in terms of reducing the agricultural need for water. Based on models and an interdisciplinary approach, they tested a variety of options for a dry area (Plain of the Broye) and an area less dry (Lake of Greifen) up to 2050. They also took into consideration a number of economic and political conditions.

"The aim is to maintain productivity while minimising the use of water and the impact on the environment," says Jürg Fuhrer, leader of the project "Water demand in Swiss agriculture and sustainable adaptive options for land and water management" (AGWAM) at Agroscope.

The authors of the study have reached the conclusion that, even if the climate changes, the cultivation of agricultural land will remain viable, at least theoretically, in areas that are threatened by droughts such as the Plain of the Broye. Farmers in these areas need to limit the climate-related increase of water use and at the same time the losses in production and income. The necessary adaptations include improving irrigation efficiency, changing the mix of cultivated crops to include more winter crops such as winter rape seed or barley, adapting soil management and adjusting the organisation of agricultural land, i.e. which crops are best grown in which place.

Step-by-step change to more water-sensitive production

The aspect of the study that deals with farm management shows that farms will take measures to reduce their water needs if the price of water rises and water quotas are introduced. An environmental performance analysis shows, however, that agricultural production will continue to negatively impact the environment even if all measures considered in the study are taken. Further steps towards a resource-efficient practice are necessary, in particular, if the emission of greenhouse gases is to be reduced.

Society, the authorities and politicians will have to think about introducing incentives and rules to encourage a step-by-step transition towards an agricultural production that is more economical with water. Alternatively, they can implement purely technical and less ecological measures to maintain the status quo. His team's study, says Fuhrer, provides the scientific basis for a discussion which will become increasingly pertinent in view of the expected climate change and the related risks for agriculture.

(*) Jürg Fuhrer, Danielle Tendall, Tommy Klein, Niklaus Lehmann, and Annelie Holzkämper (2013). Water Demand in Swiss Agriculture - Sustainable Adaptive Options for Land and Water Management to Mitigate Impacts of Climate Change (NRP61 Project AGWAM)

http://www.agroscope.ch/publikationen/02121/04397/index.html?lang=en

1st Agroscope Sustainability Conference

On 23 January 2014, the Institute of Sustainability Studies at Agroscope will organise a conference on "Water in agriculture - today and tomorrow". The researchers will present and discuss new insights and approaches for adapting to the changing climate. The political environment in which this adaptation will have to take place will also be discussed.

On this subject

More detailed information and registration (by 14 January) for the Agroscope Sustainability Conference on "Water in Agriculture - today and tomorrow":

http://www.agroscope.ch/veranstaltungen/00610/index.html?lang=de&direction=asc&orderby

The National Research Programme “Sustainable Water Management” (NRP 61)
The National Research Programme “Sustainable Water Management” (NRP 61) is developing scientific principles and methods for the sustainable management of water resources, which are under increasing pressure. NRP 61 explores the effects of climate and social changes on these resources and identifies the risks and future conflicts associated with their use. NRP 61 operates with CHF 12 million for a research duration of four years. www.nfp61.ch

Contact

Professor Jürg Fuhrer
Air Pollution / Climate group
Institute of Sustainability Studies at Agroscope
Reckenholzstrasse 191
CH-8046 Zurich
Tel.: +41 44 377 75 05
E-mail: juerg.fuhrer@agroscope.admin.ch

Media - Abteilung Kommunikation | idw
Further information:
http://www.snf.ch/en/researchinFocus/media/press-releases/Pages/default.aspx

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>