Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making barley less thirsty

30.10.2012
Wageningen scientists discover genetic factor that makes barley plants resistant to salt

Barley breeders may soon develop varieties of barley which are both less sensitive to high concentrations of salt ions in the plant and more resistant to osmotic stress caused by saline soil.

Nguyen Viet Long, who hopes to obtain his doctorate at Wageningen University (part of Wageningen UR) on 2 November 2012, has found two sequence regions in the chromosomes of barley that contain the genes for these two properties.

The section comprising resistance to osmotic stress in particular is receiving a great deal of international attention from scientists working on salt tolerance. Nguyen is hoping that barley varieties which can be cultivated in saline soils will reach the market within around five years, thanks in part to his results.

Salinisation of agricultural land is a global problem. An area two hundred times the size of the Netherlands has already become too saline to use for food production. One fifth of this represents some of the best irrigated farmlands in the world. And climate change is aggravating the problem even further.

This is why researchers and plant breeders around the world are looking for opportunities to develop salt-tolerant crops for arable farming and horticulture. Of course this mostly focuses on the major food crops such as grains and potatoes. The Vietnamese PhD student Nguyen examined the possibility of adapting barley to saline conditions. Since barley is a grain, many of the results of this research will be useful to scientists studying wheat or rice. Nguyen worked together with the Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) in Germany, which has a large collection of different varieties of barley.

Nguyen examined some two hundred different varieties, including barley types from the Middle East. This is the area where barley originated, which means that large genetic variation can be found there – and the greater the genetic variation of examined varieties, the higher the chance of finding genetic factors that can be used in plant breeding. Being able to investigate so many different types of barley enabled Nguyen to determine the positions of the important hereditary properties faster and more accurately. In his research, Nguyen studied the growth of barley plants in high salt conditions.

He looked at a number of plant characteristics that are important for salt tolerance such as delayed yellowing of leaves, number of shoots and ion content in the leaves. By linking these observations to DNA analysis, he found two positions in the barley genome that affect the plant’s resistance to salt.

One of the two areas, on chromosome 4, affects how the plant deals with increased concentrations of salt ions such as Na+ and Cl-. The plant uses a kind of ‘ion pump’ to prevent these elevated i

on concentrations from reaching the leaves. This allows the photosynthesis in the leaves to continue as normal, permitting the plant to continue growing and producing seeds. The discovery of a similar mechanism in wheat was in the news quite recently.

The second area identified by Nguyen, on chromosome 6, contains one or more genes that make barley plants less sensitive to osmotic stress, which is the result of the high concentration of ions in saline soil. In this situation, plants absorb water less easily, which directly affects growth of the plants. This discovery is a real breakthrough, and has led to considerable international interest.

The precise genes responsible for salt tolerance in barley will probably be identified soon.

“Examining the genetic makeup and salt tolerance of so many different types of barley enabled me to map the interesting areas quickly and accurately,” Nguyen explains. “I am therefore hopeful that we will have barley varieties that can be grown on saline soils within around five years “ This research was funded by Wageningen UR Plant Breeding and the Vietnamese Ministry of Education.

Note for the editors

Further information: Erik Toussaint + 31 6 51 56 59 49, erik.toussaint@wur.nl Wageningen University is part of the international expertise organisation Wageningen UR (University & Research centre). Our mission is ‘To explore the potential of nature to improve the quality of life’.

Within Wageningen UR, nine research institutes – both specialised and applied – have joined forces with Wageningen University and Van Hall Larenstein University of Applied Sciences to help answer the most important questions in the domain of healthy food and living environment. With approximately 40 locations (in the Netherlands, Brazil and China), 6500 members of staff and 10,000 students, Wageningen UR is one of the leading organisations in its domain worldwide. The integral approach to problems and the cooperation between the exact sciences and the technological and social disciplines are at the heart of the Wageningen Approach.

Erik Toussaint | Wageningen University
Further information:
http://www.wur.nl

Further reports about: Applied Science Wageningen food crop genetic variation salt tolerance

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>