Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making barley less thirsty

30.10.2012
Wageningen scientists discover genetic factor that makes barley plants resistant to salt

Barley breeders may soon develop varieties of barley which are both less sensitive to high concentrations of salt ions in the plant and more resistant to osmotic stress caused by saline soil.

Nguyen Viet Long, who hopes to obtain his doctorate at Wageningen University (part of Wageningen UR) on 2 November 2012, has found two sequence regions in the chromosomes of barley that contain the genes for these two properties.

The section comprising resistance to osmotic stress in particular is receiving a great deal of international attention from scientists working on salt tolerance. Nguyen is hoping that barley varieties which can be cultivated in saline soils will reach the market within around five years, thanks in part to his results.

Salinisation of agricultural land is a global problem. An area two hundred times the size of the Netherlands has already become too saline to use for food production. One fifth of this represents some of the best irrigated farmlands in the world. And climate change is aggravating the problem even further.

This is why researchers and plant breeders around the world are looking for opportunities to develop salt-tolerant crops for arable farming and horticulture. Of course this mostly focuses on the major food crops such as grains and potatoes. The Vietnamese PhD student Nguyen examined the possibility of adapting barley to saline conditions. Since barley is a grain, many of the results of this research will be useful to scientists studying wheat or rice. Nguyen worked together with the Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) in Germany, which has a large collection of different varieties of barley.

Nguyen examined some two hundred different varieties, including barley types from the Middle East. This is the area where barley originated, which means that large genetic variation can be found there – and the greater the genetic variation of examined varieties, the higher the chance of finding genetic factors that can be used in plant breeding. Being able to investigate so many different types of barley enabled Nguyen to determine the positions of the important hereditary properties faster and more accurately. In his research, Nguyen studied the growth of barley plants in high salt conditions.

He looked at a number of plant characteristics that are important for salt tolerance such as delayed yellowing of leaves, number of shoots and ion content in the leaves. By linking these observations to DNA analysis, he found two positions in the barley genome that affect the plant’s resistance to salt.

One of the two areas, on chromosome 4, affects how the plant deals with increased concentrations of salt ions such as Na+ and Cl-. The plant uses a kind of ‘ion pump’ to prevent these elevated i

on concentrations from reaching the leaves. This allows the photosynthesis in the leaves to continue as normal, permitting the plant to continue growing and producing seeds. The discovery of a similar mechanism in wheat was in the news quite recently.

The second area identified by Nguyen, on chromosome 6, contains one or more genes that make barley plants less sensitive to osmotic stress, which is the result of the high concentration of ions in saline soil. In this situation, plants absorb water less easily, which directly affects growth of the plants. This discovery is a real breakthrough, and has led to considerable international interest.

The precise genes responsible for salt tolerance in barley will probably be identified soon.

“Examining the genetic makeup and salt tolerance of so many different types of barley enabled me to map the interesting areas quickly and accurately,” Nguyen explains. “I am therefore hopeful that we will have barley varieties that can be grown on saline soils within around five years “ This research was funded by Wageningen UR Plant Breeding and the Vietnamese Ministry of Education.

Note for the editors

Further information: Erik Toussaint + 31 6 51 56 59 49, erik.toussaint@wur.nl Wageningen University is part of the international expertise organisation Wageningen UR (University & Research centre). Our mission is ‘To explore the potential of nature to improve the quality of life’.

Within Wageningen UR, nine research institutes – both specialised and applied – have joined forces with Wageningen University and Van Hall Larenstein University of Applied Sciences to help answer the most important questions in the domain of healthy food and living environment. With approximately 40 locations (in the Netherlands, Brazil and China), 6500 members of staff and 10,000 students, Wageningen UR is one of the leading organisations in its domain worldwide. The integral approach to problems and the cooperation between the exact sciences and the technological and social disciplines are at the heart of the Wageningen Approach.

Erik Toussaint | Wageningen University
Further information:
http://www.wur.nl

Further reports about: Applied Science Wageningen food crop genetic variation salt tolerance

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>