Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing the Shelf-Life of Cassava

19.07.2010
Crop scientists have identified several genetic mechanisms to improving the shelf-life of cassava roots. Long an unsolvable problem, the research has the potential to benefit the poorest of the poor, widening and strengthening the markets for cassava, reducing marketing costs, and losses along the marketing or value addition process.

The research team, led by Hernán Ceballos at the International Center for Tropical Agriculture, identified four different sources of tolerance to a phenomenon known as post-harvest physiological deterioration. This process renders the cassava roots inedible and unmarketable a mere two to four days after harvesting.

This study started with an accident. A few roots from a cassava clone (belonging to a new high-carotene generation) were left on a shelf for more than two months between. When inspected these roots did not show any symptoms of deterioration. This result prompted the planning and execution of a study whose results are presented in the July-August 2010 edition of Crop Science, published by the Crop Science Society of America.

One source of tolerance was found in the only species of cassava native to the United States. A second source was induced by mutagenic levels of gamma rays which silenced one of the genes that cause the deterioration symptoms.

A third source was a group of high-carotene clones. The authors suggest that the antioxidant properties of carotenoids protect the roots from deterioration, which is basically an oxidative process. Finally, tolerance was also observed in a waxy-starch mutant. The researchers believe that the waxy-starch gene is co-located next to a tolerance gene, and resistance to deterioration is not directly caused by the mutant gene.

“This kind of discovery includes sources from wild relatives of cassava, which supports the need for germplasm collections,” says lead researcher Hernán Ceballos. “It also has new sources of tolerance induced through mutagenesis or exposed through inbreeding, which is a rather new thing for cassava. Finally, some of the tolerance comes from the anti-oxidant properties of high carotene cassava. But mostly this is very important for women who sell cassava roots in markets throughout Africa or Latin America who will not necessarily lose their products if they fail to sell them within a day or two after harvest.”

The economic relevance of these discoveries is expected to be huge. Cassava is one of the most important staple crops worldwide, and is the most important in many arid regions, such as sub-Saharan Africa. It can produce reasonable root yields under adverse climatic and soil conditions, and offers the advantage of a flexible harvesting date, allowing farmers to keep the roots in the ground until needed. In addition to the important role cassava plays in food security, there is a growing demand for cassava roots by the starch, food, animal feed, and ethanol processing industries.

The results of this study suggest that tolerance to post-harvest physiological deterioration can be found in different sources, and they seem to be acting through different biochemical/genetic mechanisms. They also highlight the importance of germplasm collections and their screening, the usefulness of inbreeding cassava (in search of recessive traits) and the potential of induced mutations, particularly with the advent of molecular tools.

Future research will focus on finding additional sources of tolerance and identifying molecular markers linked to those traits. This will allow for early identification of tolerant varieties, overcoming the current limitations of cassava research, which involve growing large numbers of roots to obtain sufficient data.

This study will go a long way towards addressing bottlenecks that prevent cassava having a larger impact on the livelihoods of the communities that depend on it, as identified by the Food and Agriculture Organization of the United Nations (FAO) Global Cassava Initiative, which culminated in 2000. It concluded that cassava could become the raw material base for an array of processed products and contribute to agricultural transformation and economic growth in developing countries.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.crops.org/publications/cs/abstracts/50/4/1333.

Crop Science is the flagship journal of the Crop Science Society of America. Original research is peer-reviewed and published in this highly cited journal. It also contains invited review and interpretation articles and perspectives that offer insight and commentary on recent advances in crop science. For more information, visit http://crop.scijournals.org

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives.

Sara Uttech | Newswise Science News
Further information:
http://www.sciencesocieties.org
http://www.crops.org

Further reports about: Cassava Science TV agriculture crop crop science genetic mechanism molecular genetic

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>