Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing predator-friendly land can help farmers reduce costs

14.05.2012
Having natural habitat in farming areas that supports ladybugs could help increase their abundance in crops where they control pests and help farmers reduce their costs, says a Michigan State University study.
Ladybugs and other predatory insects eat crop pests, saving farmers an estimated $4.6 billion a year on insecticides. Non-crop plants provide these predatory insects with food and shelter, helping them to survive and thrive in areas where they are needed. In an attempt to increase benefits from predatory insects, researchers have often planted strips of flowers along the edges of crop fields.

However, natural habitats also provide vital food and shelter resources and may be more important for pest control, said Megan Woltz, MSU doctoral student and co-author of the study that appears in the current issue of Agriculture, Ecosystems and Environment.

“Creating predator-attracting habitats next to crops is only a partial solution,” said Woltz, who co-authored the study with MSU entomologists Doug Landis and Rufus Isaacs. “Ladybugs and many other pest-eating insects travel long distances throughout the growing season, sometimes flying or crawling over many miles as they search for food and shelter. So we also have to consider what resources are available to these predators at larger scales.”

Ladybugs are heralded as a natural, effective killer of soybean aphids, the most-destructive soybean pest in the northern United States. To determine the best way to attract ladybugs to soybean fields, researchers planted buckwheat strips next to soybean fields and also examined the amount of natural habitat within 1.5 miles of the fields.

“Ladybugs loved our buckwheat strips,” Woltz said. “We always found way more ladybugs in the buckwheat than are usually in field edges. Unfortunately, all of the ladybugs in the buckwheat did little to change their populations in the soybean fields.”

Ultimately, natural habitat proved to be more important. The amount of grasslands and forests within 1.5 miles of the soybean fields determined how many ladybugs ended up in the field, she added.

Such large areas typically encompass multiple farms, suggesting that rural neighbors may need to work together. In other studies, landscapes with at least 20 percent of non-crop habitat showed good pest control. Providing some habitat on every farm and the properties that surround them would add up to a lot of habitat at the landscape scale – the scale that matters to ladybugs.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world’s most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

Further reports about: MSU crop plant natural habitat pest control soybean fields

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>