Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving nitrogen use efficiency lessens environmental impact

03.01.2011
Grafting proves successful in melon, provides low-input growing strategies

Most agricultural crops require large quantities of nitrate-rich fertilizer to realize optimal yields. The dilemma for growers is finding ways to balance the amount of nitrogen needed for production while minimizing potentially harmful nitrates that can leach into ground and surface waters.

Increased interest in environmentally beneficial "low-input" approaches is challenging researchers to identify genotypes that have a characteristic called "high nutrient use efficiency", or NUE. Using vegetable types with high NUE could help growers lessen environmental impacts while maintaining high crop yields. A new study reported on improved NUE traits that resulted from grafting melon plants onto commercial rootstocks.

Scientist Giuseppe Colla from the University of Tuscia and colleagues published the research in HortScience.The researchers evaluated a "rapid and economical" methodology for screening melon rootstocks for NUE using two experiments. In the first experiment melon plants, either ungrafted or grafted onto four commercial rootstocks grown in hydroponics, were compared. The second experiment was designed to confirm whether the use of a selected rootstock with high NUE could improve crop performance and NUE of grafted melon plants under field conditions.

The researchers observed that NUE traits were improved by grafting melon plants onto commercial rootstocks; grafted plants needed less nitrate in the nutrient solution to reach half maximum shoot dry weight. "In addition, the higher nitrate reductase activity of grafted plants under low nitrate conditions confirms that certain rootstocks have the potential to improve the NUE of grafted plants", they noted. In the second experiment, carried out under open field conditions, increasing the fertilization rates increased the total and marketable yields of melon plants, while decreasing NUE. When averaged over nitrogen levels, the marketable yield, NUE, and N uptake efficiency were higher by 9%, 11.8%, and 16.3%, respectively, in grafted plants than in ungrafted plants.

"We found that the use of melon grafted on selected rootstock represents a potential strategy for increasing yield and NUE and coping with soil fertility problems under low-input conditions", the authors concluded.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/45/4/559

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>