Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glucose facilitates the use of natural indigo

08.01.2009
Research Scientist Anne Vuorema of MTT Agrifood Research Finland proves in her doctoral dissertation that glucose can serve as a reducing agent of indigo. This finding is significant for devising more ecological dyeing practices for the textile industry.

Indigo is a vat dye and it needs to be reduced to its water-soluble leuco-form before dyeing. This allows the actual dye to pass on to textile fibres. Glucose is known to be a good reducing agent, and Vuorema’s work demonstrates that it also works with indigo.

Glucose dyeing seems to suit plant-derived fibres, such as cotton and flax, which withstand a high pH (11–12). However, at this stage it cannot be recommended for animal fibres, such as wool and silk (which can only withstand a pH of up to 9).

A specialised field with few experts

Anne Vuorema’s field of study is not widely known, and there are perhaps only 20 researchers worldwide whose work focuses on plant-derived indigo. Vuorema and MTT launched the indigo research as part of the EU Spindigo project in 2001–2004. The project prompted questions which Vuorema attempted to answer in her dissertation.

Vuorema works as an external researcher for MTT Plant Production Research. The Finnish Cultural Foundation granted a scholarship for her doctoral dissertation in three years. In 2007, the Academy of Finland funded her research at the University of Bath in England. This is where she has conducted most of her electrochemical research.

Vuorema conducted her research at the University of Bath and the University of Reading in 2004–2006. Professor Philip John at the University of Reading was the leader of the Spindigo project and he also supervised Vuorema’s research in Reading.

Anne Vuorema’s research provides answers that enable researchers to improve the extraction of indigo from the leaves of dyer’s woad (Isatis tinctoria L.). Her work enhances the energy efficiency of dyeing and can potentially promote the profitable use of plant-derived indigo.

Dyer’s woad is the best known of all indigo-producing plants in Europe. Plant-derived indigo was commonly produced until the early 20th century when synthetic indigo replaced it. The blue dye used in jeans, for instance, is nowadays synthetically produced from oil, in a process which wastes non-renewable natural resources and burdens the environment with synthetic chemicals.

Electrochemical reduction enables a clean process

In her dissertation research, Anne Vuorema developed a new electrochemical method for determining the purity of indigo. She reduced plant-derived indigo using glucose and measured the indigo concentration in the mixture using a new method. This is a great improvement in determining the purity of plant-derived indigo.

The method can also be applied to assess the purity of other similar chemicals.
“The degree of purity of plant-derived indigo is fairly low. Crude indigo has a dye content of less than 50%, while synthetic indigo has a dye content of over 95%. The impurities and means to reduce them are not yet well known,” Vuorema explains.
Businesses look for guaranteed standard quality of dye. At the same time, ecologically geared companies are looking for increasingly natural methods for dyeing fabrics, among other things.

“Plant-derived indigo is a marginal, alternative product, and it does not currently compete with synthetic indigo,” Vuorema says.

Vuorema also investigated indirect electrochemical reduction. She discovered that 1.8-dihydroxyanthraquinone was an efficient catalyst for glucose-induced reduction. Electrochemical reduction can only be introduced by major companies as it requires investment in special equipment.

“We still need to achieve a lower pH in glucose reduction and solve the matter of impurities,” Vuorema muses.

Ulla Jauhiainen | alfa
Further information:
http://oa.doria.fi/handle/10024/42825
http://www.mtt.fi

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>