Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glucose facilitates the use of natural indigo

08.01.2009
Research Scientist Anne Vuorema of MTT Agrifood Research Finland proves in her doctoral dissertation that glucose can serve as a reducing agent of indigo. This finding is significant for devising more ecological dyeing practices for the textile industry.

Indigo is a vat dye and it needs to be reduced to its water-soluble leuco-form before dyeing. This allows the actual dye to pass on to textile fibres. Glucose is known to be a good reducing agent, and Vuorema’s work demonstrates that it also works with indigo.

Glucose dyeing seems to suit plant-derived fibres, such as cotton and flax, which withstand a high pH (11–12). However, at this stage it cannot be recommended for animal fibres, such as wool and silk (which can only withstand a pH of up to 9).

A specialised field with few experts

Anne Vuorema’s field of study is not widely known, and there are perhaps only 20 researchers worldwide whose work focuses on plant-derived indigo. Vuorema and MTT launched the indigo research as part of the EU Spindigo project in 2001–2004. The project prompted questions which Vuorema attempted to answer in her dissertation.

Vuorema works as an external researcher for MTT Plant Production Research. The Finnish Cultural Foundation granted a scholarship for her doctoral dissertation in three years. In 2007, the Academy of Finland funded her research at the University of Bath in England. This is where she has conducted most of her electrochemical research.

Vuorema conducted her research at the University of Bath and the University of Reading in 2004–2006. Professor Philip John at the University of Reading was the leader of the Spindigo project and he also supervised Vuorema’s research in Reading.

Anne Vuorema’s research provides answers that enable researchers to improve the extraction of indigo from the leaves of dyer’s woad (Isatis tinctoria L.). Her work enhances the energy efficiency of dyeing and can potentially promote the profitable use of plant-derived indigo.

Dyer’s woad is the best known of all indigo-producing plants in Europe. Plant-derived indigo was commonly produced until the early 20th century when synthetic indigo replaced it. The blue dye used in jeans, for instance, is nowadays synthetically produced from oil, in a process which wastes non-renewable natural resources and burdens the environment with synthetic chemicals.

Electrochemical reduction enables a clean process

In her dissertation research, Anne Vuorema developed a new electrochemical method for determining the purity of indigo. She reduced plant-derived indigo using glucose and measured the indigo concentration in the mixture using a new method. This is a great improvement in determining the purity of plant-derived indigo.

The method can also be applied to assess the purity of other similar chemicals.
“The degree of purity of plant-derived indigo is fairly low. Crude indigo has a dye content of less than 50%, while synthetic indigo has a dye content of over 95%. The impurities and means to reduce them are not yet well known,” Vuorema explains.
Businesses look for guaranteed standard quality of dye. At the same time, ecologically geared companies are looking for increasingly natural methods for dyeing fabrics, among other things.

“Plant-derived indigo is a marginal, alternative product, and it does not currently compete with synthetic indigo,” Vuorema says.

Vuorema also investigated indirect electrochemical reduction. She discovered that 1.8-dihydroxyanthraquinone was an efficient catalyst for glucose-induced reduction. Electrochemical reduction can only be introduced by major companies as it requires investment in special equipment.

“We still need to achieve a lower pH in glucose reduction and solve the matter of impurities,” Vuorema muses.

Ulla Jauhiainen | alfa
Further information:
http://oa.doria.fi/handle/10024/42825
http://www.mtt.fi

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>