Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genome sequence could improve important agricultural crops

29.08.2011
An international team of scientists, funded in the UK by the Biotechnology and Biological Sciences Research Council (BBSRC), has sequenced the genome of a Chinese cabbage variety of a plant called Brassica rapa, a close relative of oilseed rape. The research, which is published today (28 August) in the journal Nature Genetics, could help improve the efficiency of oilseed rape breeding, as well as that of a host of other important food and oil crops.

The project was conducted by an international consortium involving researchers working across four continents, with the majority of the data generated in China. The UK's contribution came from scientists at the John Innes Centre in Norwich and Rothamsted Research in Hertfordshire, both of which receive strategic funding from BBSRC.

Oilseed rape is an important source of vegetable oils for cooking and industrial applications and its production has doubled in the last 15 years. It is an unusual hybrid which contains the entire genomes of two other plants: Brassica rapa and another closely related species called Brassica oleracea. By sequencing Brassica rapa, researchers are able to access half of oilseed rape's genes without having to wrestle with its large and complicated genome.

Professor Ian Bancroft led the research at the John Innes Centre. He explains "Oilseed rape is the second most important oil crop in the world and the most important in Europe. Sequencing its genes will provide breeders with the tools to improve the efficiency of developing new varieties, but this is difficult because it has a really complicated genome. Thankfully, because it is a hybrid, nature has already divided up the oilseed rape genome into two more manageable chunks, one of which we have now sequenced."

Brassica rapa and oilseed rape are both brassicas, a group which also includes broccoli, turnip, sprouts and cabbages. Together, this important group of plants accounts for more than 10 percent of the world's vegetable and vegetable oil production and, despite their apparent diversity, they are all closely related. This enables scientists to apply the insights they gain by sequencing one species, such as Brassica rapa to improving the breeding efficiency of a range of crops essential to ensuring global food security.

Professor Bancroft continues "Few people would confuse a turnip with a cauliflower and yet, despite coming in a range of shapes and sizes, brassicas are all very closely related. This means that the many of the 41,000 genes which we found in Brassica rapa will also be found in other brassicas and the insights we gain from having this sequence could be useful for improving everything from plants grown to produce chainsaw oils to the sprouts on your Christmas dinner."

The Brassica rapa sequence was produced using a technology which breaks the DNA into small segments before reassembling the complete genome. Throughout its evolution Brassica rapa has triplicated its genome meaning that the task of assembling the final picture posed a particular challenge to the scientists and the technology.

Professor Douglas Kell, Chief Executive of the Biotechnology and Biological Sciences Research Council, said "Plants have a tendency to multiply their genomes as they evolve. This means that many important agricultural crops like wheat, potato and oilseed rape have much larger and more complex genomes than most animals, including humans.

"Helping breeders produce new varieties of these staple crops will be essential to ensuring our future food security, so scientists must use their ingenuity to find ways to overcome the challenges posed by these massive genomes. This research shows what can be achieved by applying the latest technology and by combining the expertise of scientists across the world."

Mike Davies | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>