Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Data Can Help Predict How Pine Forests Will Cope with Climate Change

05.03.2015

Gene variants influence maritime pine survival under climate stress

Data from only a small number of gene variants can predict which maritime pine trees are most vulnerable to climate change, scientists report in the March issue of GENETICS. The results will improve computer models designed to forecast where forests will grow as the climate changes, and promises to help forestry managers decide where to focus reforestation efforts. The results will also guide the choice of tree stocks.


Santiago C. González-Martínez.

Maritime pine forest in Serra Calderona, eastern Spain. Typical Mediterranean forests as the one pictured here are under severe risk due to summer droughts and wildfire. It is expected that extinction risk of this valuable ecosystem will increase due to climate change.

The maritime pine (Pinus pinaster) grows widely in southwestern Europe and parts of northern Africa. But the tree's important economic value and ecological roles in the region may be at risk as the changing climate threatens the more vulnerable forests and the productivity of commercial plantations.

To predict which regions will sustain pine forests in the future, researchers and managers rely on computer models. But these forecasts don't take into account two major factors that influence a forest's fate: genetics and evolution. Genetic differences between tree populations mean that forests vary in how well they cope with warmer, drier conditions. Ongoing evolution of trees also influences the prevalence of these genetic differences; for example, trees with gene variants allowing them to withstand higher temperatures will become increasingly common as the climate changes.

"These genetic effects are not included in forest range shift models, but we know they can completely change the resulting predictions. Our goal was to identify such effects in a way that can be readily incorporated into the forecasts," said study leader Santiago González-Martínez, from the Forest Research Centre of Spain's Institute for Agricultural Research (CIFOR-INIA).

To find genetic variants that affect the species’ fitness in different climate conditions, maritime pine researchers from around the world pooled their expertise and the results of previous research, yielding a list of more than 300 variants in 200 candidate genes. Creating a shortlist of targets is considerably faster and more economical than searching the entire genome of the maritime pine, which is about nine times larger than the human genome.

From this list, the team tested whether any of the candidates were more common in regions that shared similar climates. Such geographic patterns can be the result of natural selection and point to gene variants that influence tree survival and reproduction according to climate. By testing the frequency of each variant at 36 locations in Portugal, Spain, France, Morocco, and Tunisia, the researchers found 18 variants that showed correlations with the local climate. These variants affected genes involved in many different biological processes, including growth and response to heat stress.

The researchers then looked for evidence that these variants are important for the trees’ fitness by planting seedlings from 19 of the locations together in a dry part of Spain, at the extreme end of the species' climatic range. This allowed the team to compare how well genetically different trees would survive under similar conditions. After five years, the seedlings carrying gene variants predicted to be beneficial in the local climate indeed tended to have higher survival rates.

These results demonstrate the feasibility of this relatively fast approach of finding and confirming genetic variants associated with climate. "Now that we have shown that the method works well, we are planning similar experiments on a bigger scale, with more test sites, looking at more genes, and different traits. For example, the single biggest climate change threat to pine forests is the increased frequency of wildfires, so we're searching for variants that affect fire tolerance," said González-Martínez.

"Good decisions require good data, and this collaborative work shows how crucial genetic data can be for managing biodiversity and commercial forestry amid a changing climate," said GENETICS Editor-in-Chief Mark Johnston.

CITATION:
Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)
Juan-Pablo Jaramillo-Correa, Isabel Rodríguez-Quilón, Delphine Grivet, Camille Lepoittevin, Federico Sebastiani, Myriam Heuertz, Pauline H. Garnier-Géré, Ricardo Alía, Christophe Plomion, Giovanni G. Vendramin, and Santiago C. González-Martínez

GENETICS March 2015 199:793-807 doi:10.1534/genetics.114.173252
http://www.genetics.org/content/199/3/793.full

FUNDING:
The study was funded by grants from the European Commission (FP6 NoE EvolTree and FP7 NovelTree Breeding), the Spanish National Research Plan (ClonaPin, RTA2010-00120-C02-01; VaMPiro, CGL2008-05289-C02-01/02; AdapCon, CGL2011-30182-C02-01; and AFFLORA, CGL2012-40129-C02-02), the Italian Science Ministry (MIUR project ‘Biodiversitalia’, RBAP10A2T4), and the ERA-Net BiodivERsA (LinkTree project, EUI2008-03713), which included the Spanish Ministry of Economy and Competitiveness as national funder (part of the 2008 BiodivERsA call for research proposals).

Institutions involved in research:
Forest Research Centre, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Spain
Universidad Nacional Autónoma de México
Institut National de la Recherche Agronomique
University of Bordeaux
Institute of Biosciences and Bioresources, National Research Council, Italy
University of Lausanne

Contact Information
Cristy Gelling
cgelling@thegsajournals.org
Phone: +1 412-478-3537

Cristy Gelling | newswise

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>