Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next Generation Soybean Breeding: The Potential of Spectral Analysis

18.02.2013
Used in everything from baked goods to trendy edamame and livestock feed to cooking oil, the huge array of uses for soybeans has scientists looking for the most efficient ways to grow them.

That interest inspired the Kansas State University soybean breeding program to team up with the spectral analysis lab of Kevin Price, K-State professor of agronomy, to explore ways to increase the efficiency of the soybean breeding line selection process.

“The most time-consuming, land-intensive and expensive aspect of our breeding program at K-State is in harvesting the many thousands of early generation lines, weighing the seed and determining yield,” said Bill Schapaugh, K-State soybean breeder. “If we can find a way to separate out 50 percent or more of the very low-yielding lines without the need to combine harvest and weigh the seed, that would reduce the time and cost of our breeding program considerably,” Schapaugh said.

Spectral analysis, a method of analyzing the electromagnetic radiation coming from plants and other objects, is being used in the K-State Agronomy Department to determine the level of photosynthetic activity of vegetation in many different situations. The work is conducted with financial support from the Kansas Soybean Commission.

“We decided to work with Dr. Price’s spectral analysis team to try using this new technology in our soybean breeding nursery,” Schapaugh said. “The goal was to find out how effective this technology might be in predicting yields, stress tolerance and disease resistance as a way to eliminate unpromising lines early in the process.”

To do this, the K-State team, including graduate students Nan An, Brent Christenson, and Nathan Keep, used a ground-based spectroradiometer to gather spectral data in the visible and infrared spectra at various stages of growth, and correlated the results with actual yield data. They have spent the last two years trying to determine exactly what data to collect and how often, and whether any of the spectral regions being measured would have a good correlation to yield.

“Spectral analysis doesn’t have to be accurate enough to separate lines with a yield difference of just one or two bushels per acre. If it can separate lines with a yield difference of five to 10 bushels, that would be a great help in the preliminary stages of line evaluation,” Schapaugh said.

The initial model, developed by Christenson, correlated various spectral data at different growth stages with actual yields. The correlation using that model was not perfect, but was close enough to encourage further work.

“With this model, and using only the spectral data taken at the seed fill stage to make selections, we would have retained all of the highest yielding varieties by selecting the best half,” Schapaugh said.

“If we can repeat the kind of results we have achieved in the training population with experimental varieties from other populations, the precision should be accurate enough to cull out lines having a low yield potential at the earliest stage of evaluation. If we can discard low-yielding lines without having to harvest them and weigh the seed for yields, this will have tremendous value to the breeding program in terms of saving time, space and money,” he said.

The K-State team is expanding its research into this new technology, developing more robust models, using different types of sensors, adding genotypes, and evaluating the methods of measurement.

Also, this summer, the team members plan to test the use of aerial sensors in addition to the ground-based sensors. Price has been working on various aerial spectroradiometer applications in agriculture.

“Our goal is to be able to use spectral analysis to achieve a dramatic reduction in the cost of producing a unit gain in yield potential, and the results so far are promising,” Schapaugh said.

Bill Schapaugh is at 785-532-7242 or wts@ksu.edu; Steve Watson swatson@ksu.edu; Elaine Edwards 785-532-5851 or elainee@ksu.edu

Bill Schapaugh | Newswise
Further information:
http://www.ksu.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>