Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next Generation Soybean Breeding: The Potential of Spectral Analysis

18.02.2013
Used in everything from baked goods to trendy edamame and livestock feed to cooking oil, the huge array of uses for soybeans has scientists looking for the most efficient ways to grow them.

That interest inspired the Kansas State University soybean breeding program to team up with the spectral analysis lab of Kevin Price, K-State professor of agronomy, to explore ways to increase the efficiency of the soybean breeding line selection process.

“The most time-consuming, land-intensive and expensive aspect of our breeding program at K-State is in harvesting the many thousands of early generation lines, weighing the seed and determining yield,” said Bill Schapaugh, K-State soybean breeder. “If we can find a way to separate out 50 percent or more of the very low-yielding lines without the need to combine harvest and weigh the seed, that would reduce the time and cost of our breeding program considerably,” Schapaugh said.

Spectral analysis, a method of analyzing the electromagnetic radiation coming from plants and other objects, is being used in the K-State Agronomy Department to determine the level of photosynthetic activity of vegetation in many different situations. The work is conducted with financial support from the Kansas Soybean Commission.

“We decided to work with Dr. Price’s spectral analysis team to try using this new technology in our soybean breeding nursery,” Schapaugh said. “The goal was to find out how effective this technology might be in predicting yields, stress tolerance and disease resistance as a way to eliminate unpromising lines early in the process.”

To do this, the K-State team, including graduate students Nan An, Brent Christenson, and Nathan Keep, used a ground-based spectroradiometer to gather spectral data in the visible and infrared spectra at various stages of growth, and correlated the results with actual yield data. They have spent the last two years trying to determine exactly what data to collect and how often, and whether any of the spectral regions being measured would have a good correlation to yield.

“Spectral analysis doesn’t have to be accurate enough to separate lines with a yield difference of just one or two bushels per acre. If it can separate lines with a yield difference of five to 10 bushels, that would be a great help in the preliminary stages of line evaluation,” Schapaugh said.

The initial model, developed by Christenson, correlated various spectral data at different growth stages with actual yields. The correlation using that model was not perfect, but was close enough to encourage further work.

“With this model, and using only the spectral data taken at the seed fill stage to make selections, we would have retained all of the highest yielding varieties by selecting the best half,” Schapaugh said.

“If we can repeat the kind of results we have achieved in the training population with experimental varieties from other populations, the precision should be accurate enough to cull out lines having a low yield potential at the earliest stage of evaluation. If we can discard low-yielding lines without having to harvest them and weigh the seed for yields, this will have tremendous value to the breeding program in terms of saving time, space and money,” he said.

The K-State team is expanding its research into this new technology, developing more robust models, using different types of sensors, adding genotypes, and evaluating the methods of measurement.

Also, this summer, the team members plan to test the use of aerial sensors in addition to the ground-based sensors. Price has been working on various aerial spectroradiometer applications in agriculture.

“Our goal is to be able to use spectral analysis to achieve a dramatic reduction in the cost of producing a unit gain in yield potential, and the results so far are promising,” Schapaugh said.

Bill Schapaugh is at 785-532-7242 or wts@ksu.edu; Steve Watson swatson@ksu.edu; Elaine Edwards 785-532-5851 or elainee@ksu.edu

Bill Schapaugh | Newswise
Further information:
http://www.ksu.edu

More articles from Agricultural and Forestry Science:

nachricht How algae could save plants from themselves
11.05.2016 | Carnegie Institution for Science

nachricht Biofeedback system designed to control photosynthetic lighting
10.05.2016 | American Society for Horticultural Science

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>