Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next Generation Soybean Breeding: The Potential of Spectral Analysis

18.02.2013
Used in everything from baked goods to trendy edamame and livestock feed to cooking oil, the huge array of uses for soybeans has scientists looking for the most efficient ways to grow them.

That interest inspired the Kansas State University soybean breeding program to team up with the spectral analysis lab of Kevin Price, K-State professor of agronomy, to explore ways to increase the efficiency of the soybean breeding line selection process.

“The most time-consuming, land-intensive and expensive aspect of our breeding program at K-State is in harvesting the many thousands of early generation lines, weighing the seed and determining yield,” said Bill Schapaugh, K-State soybean breeder. “If we can find a way to separate out 50 percent or more of the very low-yielding lines without the need to combine harvest and weigh the seed, that would reduce the time and cost of our breeding program considerably,” Schapaugh said.

Spectral analysis, a method of analyzing the electromagnetic radiation coming from plants and other objects, is being used in the K-State Agronomy Department to determine the level of photosynthetic activity of vegetation in many different situations. The work is conducted with financial support from the Kansas Soybean Commission.

“We decided to work with Dr. Price’s spectral analysis team to try using this new technology in our soybean breeding nursery,” Schapaugh said. “The goal was to find out how effective this technology might be in predicting yields, stress tolerance and disease resistance as a way to eliminate unpromising lines early in the process.”

To do this, the K-State team, including graduate students Nan An, Brent Christenson, and Nathan Keep, used a ground-based spectroradiometer to gather spectral data in the visible and infrared spectra at various stages of growth, and correlated the results with actual yield data. They have spent the last two years trying to determine exactly what data to collect and how often, and whether any of the spectral regions being measured would have a good correlation to yield.

“Spectral analysis doesn’t have to be accurate enough to separate lines with a yield difference of just one or two bushels per acre. If it can separate lines with a yield difference of five to 10 bushels, that would be a great help in the preliminary stages of line evaluation,” Schapaugh said.

The initial model, developed by Christenson, correlated various spectral data at different growth stages with actual yields. The correlation using that model was not perfect, but was close enough to encourage further work.

“With this model, and using only the spectral data taken at the seed fill stage to make selections, we would have retained all of the highest yielding varieties by selecting the best half,” Schapaugh said.

“If we can repeat the kind of results we have achieved in the training population with experimental varieties from other populations, the precision should be accurate enough to cull out lines having a low yield potential at the earliest stage of evaluation. If we can discard low-yielding lines without having to harvest them and weigh the seed for yields, this will have tremendous value to the breeding program in terms of saving time, space and money,” he said.

The K-State team is expanding its research into this new technology, developing more robust models, using different types of sensors, adding genotypes, and evaluating the methods of measurement.

Also, this summer, the team members plan to test the use of aerial sensors in addition to the ground-based sensors. Price has been working on various aerial spectroradiometer applications in agriculture.

“Our goal is to be able to use spectral analysis to achieve a dramatic reduction in the cost of producing a unit gain in yield potential, and the results so far are promising,” Schapaugh said.

Bill Schapaugh is at 785-532-7242 or wts@ksu.edu; Steve Watson swatson@ksu.edu; Elaine Edwards 785-532-5851 or elainee@ksu.edu

Bill Schapaugh | Newswise
Further information:
http://www.ksu.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>