Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The gene that turns ponies into large horses

14.02.2013
TiHo researchers discover genetic causes of the body sizes of horses

Ponies have a maximum height of 148 centimetres. When the height at the withers is greater, they are deemed to be large horses. Scientists at the Institute for Animal Breeding and Genetics at University of Veterinary Medicine Hannover (TiHo) have investigated genetic causes for different body sizes in horses and found a gene with a very strong impact on size.

The researchers compared thousands of genetic variations between ponies and larger horses to determine whether a specific mutation is responsible for size differences in horses. Such point mutations on single nucleotide polymorphisms (SNPs) are the most common causes of genetic variations. Scientists then used gene expression analysis to identify a gene that has a crucial effect on the size development of horses. The results have been published in PloS One, an international specialised journal, at http://dx.plos.org/10.1371/journal.pone.0056497.

The growth of the horses is determined by a mutation that influences the LCORL (ligand-dependent nuclear receptor compressor-like protein) gene. This mutation has the effect that the gene is not read as often in large horses as it is in ponies. "We conclude from these findings that LCORL limits size growth in horses. The more strongly LCORL is expressed, the smaller the horses are" said Professor Dr Ottmar Distl, the head of the Institute for Animal Breeding and Genetics at TiHo. All original Przewalski wild horses carried the pony mutation and purebred Arab horses also have only this genetic variant.

Warmblood horses show a greater variation of the height at the withers and have a great genetic variation. Almost half of this variation is due to regulatory mutation affecting LCORL. The smaller warmblood horses are homozygous for the pony mutation. Warmblood horses in the medium-sized range carry both genetic variants and are therefore heterozygous, while large warmblood horses are homozygous for the large horse mutation.

The large coldblood horse breeds such as the Rhenish-German Coldblood, the Saxon-Thuringia Coldblood, the Noriker and the South-German Coldblood do not include animals with the homozygous pony mutation and only a few of them are heterozygous. "The distribution of the pony mutation in the different horse breeds suggests that the mutation prevailing in large horses arose during the domestication of horses in Western Europe," explained Professor Distl.

LCORL influences the torso and hip length in humans, but does not act as a major regulator for size. However, scientists assume that LCORL has a very strong effect on the size of horses. There are also other genes involved in the complex characteristic "body size" and the scientists plan to investigate these genes in further studies.

Horse breeders can use these new findings for their breeding decisions. The Institute for Animal Breeding and Genetics at TiHo offers gene testing for this purpose. Further information is provided on the institute's website: www.tiho-hannover.de/kliniken-institute/institute/institur-fuer-tierzucht-und-vererbungsforschung /dienstleistungen/gentest/gentests-pferd/

For specialised queries, please contact:

Professor Dr. Ottmar Distl
University of Veterinary Medicine Hannover
Institute for Animal Breeding and Genetics
Tel.: +49 511 953-8875
ottmar.distl@tiho-hannover.de

Sonja von Brethorst | idw
Further information:
http://www.tiho-hannover.de

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>