Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Diversity prevents resistance


A diverse and species-rich agricultural landscape is also beneficial to farmers. This isn't just because there are plenty of pollinating insects, creepy crawly pest controllers and other useful helpers. Scientists at the Helmholtz Centre for Environmental Research (UFZ) in Leipzig have come across another effect, which has thus far been unknown: in species-rich habitats, pests don't become resistant to chemical control measures so quickly, according to their publication in the scientific journal Proceedings of the Royal Society B.

Our opponents always seem to be one step ahead. Although pest controllers now have numerous chemical preparations available, allowing them to take action against unwanted insects, the species targeted are developing a resistance against the different active substances at a rapid pace.

In habitats rich in different species, pests don't become resistant to chemical control agents as quickly.

André Künzelmann, UFZ

Often a single change in the organisms' genetic material is enough to do this. This means that scientists know more than 500 pests all over the world currently able to resist a total of 300 different insecticides. Many disease-transmitting mosquitoes defy any attempts to control them just as stubbornly as Colorado potato beetles and other agricultural pests.

On the other hand, other species that weren't being targeted actually suffered much more. Ultimately, pesticides don't just stay in one field, but end up in the bordering fields, woods and water. However, the insects living there develop much less resistance.

"Over time, these species become two to four times more resistant to the pesticide used," stated Professor Matthias Liess, Head of the Department for System Ecotoxicology at the UFZ. Pests, on the other hand, manage to become between ten and a thousand times more resistant.

The researchers wanted to find out how this discrepancy comes about. "This is of interest from an agricultural point of view, as well as for nature conservation," em-phasised Matthias Liess. That's because anybody that understands these processes better, has the possibility of slowing down the spread of resistance among our creepy crawly opponents. This wouldn't just enable us to combat them more effectively. It would also mean that less pesticides are required that are dangerous to other species.

So what makes pests of all things such adaptable survival artists? The researchers had their suspicions where that was concerned. It was typically the organisms that settled in new habitats and were able to multiply rapidly. Mass reproduction of pests in this way does, however, soon lead to intensive rivalry between the creatures. It's this rivalry that could encourage the development of resistance.

This is because pesticides don't just kill a proportion of the insects, but weaken those that survive as well. "That doesn't apply to resistant creatures though," explained biologist Jeremias Becker, "They now have the advantage over their weakened conspecifics and can take valuable resources away from them." That's why strong rivalry can mean that resistant pests supersede their susceptible conspecifics more quickly.

On the other hand, the situation is different for many insects, which live in the bordering fields or in the water, instead of in the crops themselves. They are part of a diverse community, in which they have other challenges to overcome too. Predators and rival species restrict multiplication and rivalry too as a result within one species. The creatures that are not resistant benefit from this according to the motto, "the en-emy of my enemy is my friend."

Therefore in a diverse community, resistant crea-tures can't play off their advantage over their susceptible conspecifics so well. "This means that the gap is constantly getting bigger," explained Matthias Liess. "The pests in the crops are becoming more and more resistant to pesticides, but their neighbours in the bordering fields and in the water aren't."

UFZ researchers have tested whether this theory is correct in laboratory trials using the mosquito species Culex quinquefasciatus. These relations to the common mos-quito live in the tropics and subtropics and transmit diseases dangerous to humans and animals from avian malaria to the West Nile virus. "These creatures can be kept particularly well in the lab," explained Matthias Liess. "That's why they are often used as representatives for other mosquito species".

At the beginning of the trial, there were 400 larvae of these creatures swimming in the researcher's tanks at a time. Three-quarters of them contained the genetic mate-rial of one or even two copies of a pesticide resistance gene called ace-lR. The other quarter had to manage without this genetic information and were therefore not re-sistant. The individual populations were regularly treated with the insecticide Chlorpyrifos and also confronted with different living conditions.

Four of them had to share their tanks with water fleas, which gave them competition and restricted the population growth. With four others, the researchers removed ten to twenty percent of the larvae twice a week, in order to simulate the influence of predators. The surviving mosquitoes in this population lived plentifully without having to grapple with other organisms. In the final four populations, the insects were allowed to multiply uninterrupted and soon faced intense rivalry. The researchers then observed how the frequency of resistance genes changed over six generations of mosquitoes – a process, biologists refer to as "microevolution".

As a result, the quickest transformation was experienced by the populations without predation and interspecific competition species. The proportion of mosquitoes with a resistance gene rose from 75 to 95 percent over the course of the trial. "In these populations, creatures only had to prevail against competition from their own ranks," explained Matthias Liess.

Small differences in genetic material can bring crucial ad-vantages, especially when resources are low. That's why rivalry among conspecifics accelerates microevolution. On the other hand, the situation looks very different when competing species like water fleas or predators such as researchers catching larvae come into play. In both cases, the resistance gene spread significantly more slowly in the populations under the influence of pesticide.

However, if there was no insecticide in the water, the same mechanisms ensured that the populations quickly lost their resistance gene again without enemy species. If they weren't confronted with the poisonous preparation at all, this genetic trait would ultimately bring them no benefits, only disadvantages, as resistance comes at a price. That means resistant creatures must invest in additional enzymes, for example, which are able to break down the pesticide.

The energy they require for this is then lacking for other tasks. For example, it often leads to resistant creatures experiencing poorer growth. When there's stronger rivalry, only 40 instead of 75 percent percent of mosquitoes hold the resistance gene after six generations. However, water fleas and predators delayed this development too. Additional challenges like these really do seem to slow down microevolution.

The scientists anticipate that these effects constitute a fundamental principle and therefore apply to all habitats and species. "This could possibly result in new ap-proaches towards pest control being deduced," said Matthias Liess. This means that the increase in biodiversity with competitors and predators of harmful organisms will reduce the development of resistance. If harmful organisms try to penetrate fields, they will therefore be easier to tackle using lower levels of pesticide. "Whether this will work in practice, however, must be investigated first," emphasised Matthias Liess. However, there is one thing he does not doubt: as well as bringing wide eco-logical advantages, species diversity also makes easier pest control.

Becker JM, Liess M. 2015
Biotic interactions govern genetic adaptation to toxicants. Proc. R. Soc. B 20150071.

Further information:
Helmholtz Centre for Environmental Research (UFZ)
Prof. Dr. Matthias Liess or Jeremias Becker
Phone: +49 (0)341-235-1578 / -1494
or via
Tilo Arnhold, Susanne Hufe (UFZ press office)
Phone: +49 (0)341-235-1635, -1630

In the Helmholtz Centre for Environmental Research (UFZ), scientists conduct research into the causes and consequences of far-reaching environmental changes. Their areas of study cover water resources, biodiversity, the consequences of climate change and possible adaptation strategies, environmental technologies and biotech-nologies, bio-energy, the effects of chemicals in the environment and the way they influence health, modelling and social-scientific issues. Its guiding principle: Our re-search contributes to the sustainable use of natural resources and helps to provide long-term protection for these vital assets in the face of global change. The UFZ em-ploys more than 1,100 staff at its sites in Leipzig, Halle and Magdeburg. It is funded by the federal government, Saxony and Saxony-Anhalt.

The Helmholtz Association contributes to solving major and urgent issues in socie-ty, science and industry through scientific excellence in six research areas: Energy, earth and environment, health, key technologies, structure of matter as well as avia-tion, aerospace and transportation. The Helmholtz Association is the largest scientific organisation in Germany, with 35,000 employees in 18 research centres and an an-nual budget of around €3.8 billion. Its work is carried out in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Weitere Informationen:

Susanne Hufe | Helmholtz-Zentrum für Umweltforschung - UFZ

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>