Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diverse Wheat Tapped for Antifungal Genes

06.04.2010
Asian wheat may offer novel genes for shoring up the defenses of U.S. varieties against Fusarium graminearum fungi that cause Fusarium head blight (FHB) disease.

According to Agricultural Research Service (ARS) plant molecular biologist Guihua Bai, the FHB resistance found in today’s U.S. wheat varieties is primarily based on the Chinese wheat variety Sumai 3 and a few other sources. But there’s concern that FHB-causing species of F. graminearum will overcome these resistant sources.

In susceptible varieties, the fungus infects the wheat heads, causing kernels to shrivel up and turn chalky white. The fungus can also produce mycotoxins that reduce the kernels’ value and quality, according to Bai, who works at the ARS Hard Winter Wheat Genetics Research Unit in Manhattan, Kan.

In collaboration with Kansas State University scientists, Bai has sought new sources of FHB resistance from exotic wheat lines collected from China, Korea and Japan. These lines include “landrace” populations—domesticated plants that have changed very little since the advent of modern plant breeding.

Of 87 total Asian landrace accessions tested in greenhouse trials, 26 showed high levels of FHB resistance, Bai reports. Grain evaluations also revealed that 15 of them had exceptionally low levels of the mycotoxin deoxynivalenol, which is produced during disease development and can diminish the value of affected kernels as food or feed.

Six of the accessions possessed genes for different forms of FHB resistance known as types I, II and III. Significantly, some of the genes appear unrelated to Sumai 3, suggesting the Asian landraces could broaden the genetic pool of resistance now available for use in breeding U.S. wheat varieties. This, in turn, could help avoid repeat disasters such as the FHB epidemic that swept through the Great Plains from 1998 to 2000, costing America’s wheat industry $2.7 billion in losses.

Read more about this research in the April 2010 issue of Agricultural Research magazine.

ARS is the principal intramural scientific research agency of the U.S. Department of Agriculture (USDA). This research supports the USDA priorities of ensuring food safety and promoting international food security.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Jan Suszkiw | Newswise Science News
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>