Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellulosic Ethanol: Expanding Options, Identifying Obstacles

12.04.2010
Agricultural Research Service (ARS) scientists are figuring out how to turn wheat straw into ethanol “gold,” and learning more about the bacteria that can “infect” ethanol plants and interfere with fuel production.

At the ARS National Center for Agricultural Utilization Research (NCAUR) in Peoria, Ill., ARS chemist Badal Saha conducted a 5-year study that examined whether wheat straw—a crop residue left over after the grain has been harvested—could have commercial potential for cellulosic ethanol production.

Saha found he could access and ferment almost all the plant sugars in the biofeedstock when it was pretreated with alkaline peroxide and then broken down by enzymes. This process released even hard-to-reach sugars in plant cell walls, which significantly boosted the overall ethanol output to around 93 gallons per ton of wheat straw.

But the same environments that facilitate fermentation can also nurture microorganisms that “infect” ethanol production facilities and disrupt output. ARS geneticist Tim Leathers collected bacteria from samples at commercial ethanol facilities, including a wet-mill facility that had never been dosed with antibiotics and a dry-grind facility that periodically dosed with antibiotics after bacterial outbreaks. He found that most of the bacterial isolates he collected from both facilities were different types of lactic acid bacteria.

Meanwhile, ARS microbiologist Ken Bischoff developed a model for simulating bacterial contamination and infection. He found that when test cultures were inoculated with Lactobacillus fermentum—one of the most common sources of bacterial infections in ethanol plants—ethanol yields decreased by 27 percent. Sometimes the “infection” could be cured with antibiotics, but he also found one bacterial strain that was already resistant to treatment.

Results from this research have been published in several journals, including Biotechnology and Bioengineering, the Journal of Biobased Materials and Bioenergy, and the Journal of Industrial Microbiology and Biotechnology.

Read more about this research in the April 2010 issue of Agricultural Research magazine.

ARS is the principal intramural scientific research agency of the U.S. Department of Agriculture (USDA). This research supports the USDA priority of developing new sources of bioenergy.

Ann Perry | EurekAlert!
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>