Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bugs have key role in farming approach to storing CO2 emissions

18.06.2012
Tiny microbes are at the heart of a novel agricultural technique to manage harmful greenhouse gas emissions.

Scientists have discovered how microbes can be used to turn carbon dioxide emissions into soil-enriching limestone, with the help of a type of tree that thrives in tropical areas, such as West Africa.

Researchers have found that when the Iroko tree is grown in dry, acidic soil and treated with a combination of natural fungus and bacteria, not only does the tree flourish, it also produces the mineral limestone in the soil around its roots.

The Iroko tree makes a mineral by combining calcium from the earth with CO2 from the atmosphere. The bacteria then create the conditions under which this mineral turns into limestone. The discovery offers a novel way to lock carbon into the soil, keeping it out of the atmosphere.

In addition to storing carbon in the trees' leaves and in the form of limestone, the mineral in the soil makes it more suitable for agriculture.

The discovery could lead to reforestation projects in tropical countries, and help reduce carbon dioxide emissions in the developing world. It has already been used in West Africa and is being tested in Bolivia, Haiti and India.

The findings were made in a three-year project involving researchers from the Universities of Edinburgh, Granada, Lausanne and Neuchatel, Delft University of Technology, and commercial partner Biomim-Greenloop. The project examined several microbiological methods for locking up CO2 as limestone, and the Iroko-bacteria pathway showed best results. Work was funded by the European Commission under the Future & Emerging Technologies (FET) scheme.

Dr Bryne Ngwenya of the University of Edinburgh's School of GeoSciences, who led the consortium, said: "By taking advantage of this natural limestone-producing process, we have a low-tech, safe, readily employed and easily maintained way to lock carbon out of the atmosphere, while enriching farming conditions in tropical countries."

Catriona Kelly | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Agricultural and Forestry Science:

nachricht The farm of the future?
01.03.2017 | American Chemical Society

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>