Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automated imaging system looks underground to help improve crops

09.10.2014

Plant scientists are working to improve important food crops such as rice, maize, and beans to meet the food needs of a growing world population. However, boosting crop output will require improving more than what can be seen of these plants above the ground. Root systems are essential to gathering water and nutrients, but understanding what's happening in these unseen parts of the plants has until now depended mostly on lab studies and subjective field measurements.

To address that need, researchers from the Georgia Institute of Technology and Penn State University have developed an automated imaging technique for measuring and analyzing the root systems of mature plants. The technique, believed to be the first of its kind, uses advanced computer technology to analyze photographs taken of root systems in the field. The imaging and software are designed to give scientists the statistical information they need to evaluate crop improvement efforts.


Alexander Bucksch, a postdoctoral fellow in the Georgia Tech School of Biology and School of Interactive Computing, holds a root system from a maize plant, one of the species studied using a new imaging technique.

Credit: Rob Felt

"We've produced an imaging system to evaluate the root systems of plants in field conditions," said Alexander Bucksch, a postdoctoral fellow in the Georgia Tech School of Biology and School of Interactive Computing. "We can measure entire root systems for thousands of plants to give geneticists the information they need to search for genes with the best characteristics."

The research is supported by the National Science Foundation's Plant Genome Research Program (PGRP) and Basic Research to Enable Agriculture Development (BREAD), the Howard Buffett Foundation, the Burroughs Wellcome Fund and the Center for Data Analytics at Georgia Tech. The research was reported as the cover story in the October issue of the journal Plant Physiology.

Beyond improving food crops, the technique could also help improve plants grown for energy production, materials, and other purposes.

Root systems are complicated and vary widely even among plants of the same species. Analyzing critical root properties in field-grown plants has depended on manual measurements, which vary with observer. In contrast, automated measurements have the potential to provide enhanced statistical information for plant improvement.

Imaging of root systems has, until now, largely been done in the laboratory, using seedlings grown in small pots and containers. Such studies provide information on the early stages of development, and do not directly quantify the effects of realistic growing conditions or field variations in water, soil, or nutrient levels.

The technique developed by Georgia Tech and Penn State researchers uses digital photography to provide a detailed image of roots from mature plants in the field. Individual plants to be studied are dug up and their root systems washed clean of soil. The roots are then photographed against a black background using a standard digital camera pointed down from a tripod. A white fabric tent surrounding the camera system provides consistent lighting.

The resulting images are then uploaded to a server running software that analyzes the root systems for more than 30 different parameters – including the diameter of tap roots, root density, the angles of brace roots, and detailed measures of lateral roots. Scientists working in the field can upload their images at the end of a day and have spreadsheets of results ready for study the next day.

"In the lab, you are just seeing part of the process of root growth," said Bucksch, who works in the group of Associate Professor Joshua Weitz in the School of Biology and School of Physics at Georgia Tech. "We went out to the field to see the plants under realistic growing conditions."

Developing the digital photography technique required iterative refinements to produce consistent images that could be analyzed using computer programs. To support the goal of making the system available worldwide, it had to be simple enough for field researchers to use consistently, able to be transported in backpacks to locations without electricity, and built on inexpensive components.

In collaboration with a research team led by Jonathan Lynch, a professor of plant sciences at Penn State, the system has been evaluated in South Africa with cowpea and maize plants. With its ability to quickly gather data in the field, it was possible to evaluate a complete cowpea diversity panel. Penn State collaborator James Burridge compiled a novel cowpea reference data set that consists of approximately 1,500 excavated root systems. The data set was measured manually to validate and compare with the new computational approaches. In the future, the system could allow scientists to study crop roots over an entire growing season, potentially providing new life cycle data.

The research shows how quantitative measurement techniques from one discipline can be applied to other areas of science.

"Alexander has taken rigorous, computational principles and collaborated with leading plant root biologists from the Lynch group to study complex root structure under field conditions," said Weitz. "In doing so, he has shown how automated methods can reveal new below-ground traits that could be targeted for breeding and improvement."

Data generated by the new technique will be used in subsequent analyses to help understand how changes in genetics affect plant growth. For instance, certain genes may help plants survive in nitrogen-poor soils, or in areas where drought is a problem. The overall goal is to develop improved plants that can feed increasing numbers of people and provide sustainable sources of energy and materials.

"We have to feed an ever-growing population and we have to replace materials like oil-based fuels," Bucksch said. "Integral to this change will be understanding plants and how they provide us with food and alternative materials. This imaging technique provides data needed to accomplish this."

###

In addition to those already mentioned, the research team included Larry York and Eric Nord from Penn State and Abraham Das from Georgia Tech.

This research was supported by NSF Plant Genome Research Program Award 0820624, the NSF/BREAD Program Award 4184-UM-NSF-5380, the Howard G. Buffett Foundation, the Center for Data Analytics at Georgia Tech, and the Burroughs Wellcome Fund. Any opinions or conclusions are those of the authors and do not necessarily represent the official views of the funding agencies.

Citation: Alexander Bucksch, et al, "Image-based high-throughput field phenotyping of crop roots," (Plant Physiology 2014). http://dx.doi.org/10.1104/pp.114.243519

John Toon | Eurek Alert!
Further information:
http://www.gatech.edu

Further reports about: Genome Research Physiology Plant Genome crop materials measurements technique underground

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>