Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ARS Scientists Develop Self-pollinating Almond Trees

Self-pollinating almond trees that can produce a bountiful harvest without insect pollination are being developed by Agricultural Research Service (ARS) scientists. This is good news for almond growers who face rising costs for insect pollination because of nationwide shortages of honey bees due to Colony Collapse Disorder (CCD) and other factors.

ARS geneticist Craig Ledbetter, at the agency’s Crop Diseases, Pests and Genetics Research Unit near Parlier, Calif., is developing this new line of self-pollinating almond trees.

Self-pollinating almonds are not new. The Tuono variety, originally from Spain, has been around for centuries. But its traits are not attractive when compared to California’s most popular almond, Nonpareil.

Tuono’s seed coat has a hairy texture and it has a very thick shell, so only 32 percent of the nut is edible kernel, compared to 60 to 65 percent for Nonpareil. But Tuono’s thick shell gives it more resistance to the navel orangeworm and other pests. An almond that has traits from both varieties would be ideal.

Ledbetter and his collaborators used Tuono as the male (pollen) parent in conventional hybridizations with California-adapted almond cultivars and selections. The scientists made crosses at bloom time and came back at harvest time to collect the nuts. They then grew those nuts into seedlings and surrounded the branches with insect-proof nylon bags to exclude insects that could serve as pollinators. The seedlings bloomed and some produced fruits inside the bags, making these seedlings self-pollinating.

The original plantings in 1996 at first produced only small harvests, but by 2006 produced excellent results. In November 2008, after a very good almond harvest, Ledbetter and his team from Parlier brought eight very promising selections from his self-pollinating almond breeding program to the Almond Board of California for evaluation.

The board was pleased with the skin color, oil content and, most importantly, the flavor. And best of all, the new almonds have many of the same characteristics as Nonpareil, which sells for premium prices.

Read more about this research in the April 2010 issue of Agricultural Research magazine.

ARS is the principal intramural scientific research agency of the U.S. Department of Agriculture (USDA). The research supports the USDA priority of promoting international food security.

Alfredo Flores | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The nanostructured cloak of invisibility

25.10.2016 | Life Sciences

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

More VideoLinks >>>