Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Bison Genetic Treasure Trove for Farmers

21.10.2009
Genetic information from an extinct species of bison preserved in permafrost for thousands of years could help improve modern agricultural livestock and breeding programs, according to University of Adelaide researchers.

Researchers from the University’s Australian Centre for Ancient DNA (ACAD) worked with an international team of genomics researchers to analyse the genetic mutations of an ancient bison, many modern cattle breeds and members of the larger ruminant family tree, including deer, antelopes, and giraffes.

Their findings, published in the Proceedings of the National Academy of Sciences today, open the way for identifying important mutations in the ancestors of domestic animals, says ACAD Director Professor Alan Cooper.

“The entire ancient bison genome was screened using a bovine SNP-chip – which maps changes at 54,000 specific sites across the genome at once. This is the first time such a technique has been used to examine the genetic variation of any extinct species,” Professor Cooper says.

The bovine SNP-chip was used to scan the genomes of 61 different ruminant species and 48 cattle breeds, to create a detailed evolutionary history for this complex group, which has proven difficult using traditional genetic studies.

Study leader Professor Jerry Taylor from Missouri University says: “We were surprised to find that we were able to generate very high quality genotypes for species for which the chip was not designed”.

By analysing a very large number of mutations across the different genomes, the researchers were able to provide a far more comprehensive picture of the ruminant family tree, as well as revealing the relationships and movements of modern cattle breeds through time.

“Understanding how different genes create variation controlling growth efficiency, levels of marbling (intramuscular fat), and disease resistance could have a large economic impact for farmers who raise cattle throughout the world,” says Professor Taylor.

ACAD post-doctoral researcher Dr Kefei Chen has since used the approach to analyse the genomes of the extinct aurochs, the ancestor of modern cattle, as well as early domestic cattle from China, Russia and Europe as part of a research program funded by the Australian Research Council.

Professor Cooper says: “We are using this approach to track genetic changes that took place during domestication, when much of the diversity in ancestral species was lost due to the very strong selection applied by early farmers for a few genetic traits such as docility, rapid growth and birth rates. The lost genetic variation may hold all sorts of valuable information for modern farming, including important adaptations to climate change.

Professor Alan Cooper
Director of the Australian Centre for Ancient DNA
The University of Adelaide
Phone: +61 8 8303 5950
Mobile: +61 (0) 406 383 884

Professor Alan Cooper | Newswise Science News
Further information:
http://www.adelaide.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>