Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AgriLife research identifies wheat streak resistance gene

24.08.2010
Molecular markers can help reduce new wheat variety development time

A microscopic look into the genes of a Colorado wheat variety has allowed Texas AgriLife Research scientists to identify a wheat streak mosaic virus-resistance gene.

Wheat streak mosaic virus is one of the most common wheat viruses found in the 75 million acres of wheat across the U.S. – 3.3 million acres in Texas, said Dr. Charlie Rush, AgriLife Research plant pathologist in Amarillo.

Because there are no chemicals labeled for control of the wheat curl mite, the vector for this virus, researchers must work with wheat breeders to try to find some resistance, Rush said.

Dr. Huangjun Lu, who was a post-doctorate research associate in Amarillo during the study, led the AgriLife Research-Amarillo team of Rush; Dr. Jackie Rudd, wheat breeder; Jacob Price, associate researcher; and Dr. Ravindra Devkota, assistant research scientist. Lu has since become an assistant professor at the University of Florida.

The research was funded by grants from the Texas Wheat Producers Board, the Texas AgriLife Research Monocot Improvement Program and the Texas Cropping Systems Program. This research will be featured in an upcoming issue of Crop Science journal, Rudd said.

"Our goal was to look at the resistance in a germplasm line that was used to produce a variety of wheat in western Kansas called RonL," he said. "This variety's resistance is well known but the inheritance has not been studied until now."

The first part of the study compared the resistance of a known-susceptible variety to wheat streak mosaic virus, Karl 92, with a known-resistant variety, CO960293-2, which is a parent of the RonL variety, Rudd said.

A Nebraska wheat variety, Mace, which showed a high level of wheat streak mosaic resistance was included in the study, as were TAM 111 and TAM 112, two of the top varieties developed by the Amarillo wheat breeding program and grown in Texas that also show some resistance to the virus in field trials, he said.

The growth chamber experiment confirmed previous field work, Rudd said. Mace and CO960293-2 were highly resistant, while Karl 92 was highly susceptible. Both TAM 111 and TAM 112 were intermediate in resistance, with TAM 112 being slightly better than TAM 111.

For the genetic portion of the study, the Colorado line was crossed with TAM 111 and based on that cross, Lu determined the wheat streak mosaic virus resistance was due to a single dominant gene from the Colorado germplasm line, Rudd said.

Further molecular mapping has found the location of the specific gene that provides the resistance, he said.

Rudd explained that wheat has 21 pairs of chromosomes and this gene was mapped to chromosome 3B, "so we now know the general location, and we are developing molecular markers that can be used to track the gene in wheat breeding programs."

Only the Mace gene with known resistance to wheat streak mosaic virus had been named previously and it is Wsm1, he said.

"Now that we have determined they are different genes, this newly identified gene will be known as Wsm2."

The difference, however, is that Wsm1 is on a chromosomal translocation from intermediate wheat grass, a wild relative of wheat, which means it could carry along some less-desirable characteristics such as lower yields, Rudd said. The Wsm2 gene was identified from a bread wheat that does not have the negative traits associated with it.

"Breeders from throughout the U.S. have been using RonL and other sources of Wsm2," he said. "Now that it has been identified, they can track that through marker-assisted selection."

The AgriLife Research wheat breeding program already has a number of crosses with the Wsm2 gene in it, Rudd said. With this information, they now can develop wheat streak mosaic virus resistant varieties quicker.

Previously, the varieties had to go through a series of field trials to help select for the desired trait, he said. The consistency of seeing the symptoms in the field is environmentally influenced and differs from season to season.

"This way, we can develop resistance without the laborious field testing," Rudd said. "A lot of programs will use this information to accelerate their breeding and increase the levels of resistance in new cultivars."

Dr. Jackie Rudd | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>