Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AgriLife research identifies wheat streak resistance gene

24.08.2010
Molecular markers can help reduce new wheat variety development time

A microscopic look into the genes of a Colorado wheat variety has allowed Texas AgriLife Research scientists to identify a wheat streak mosaic virus-resistance gene.

Wheat streak mosaic virus is one of the most common wheat viruses found in the 75 million acres of wheat across the U.S. – 3.3 million acres in Texas, said Dr. Charlie Rush, AgriLife Research plant pathologist in Amarillo.

Because there are no chemicals labeled for control of the wheat curl mite, the vector for this virus, researchers must work with wheat breeders to try to find some resistance, Rush said.

Dr. Huangjun Lu, who was a post-doctorate research associate in Amarillo during the study, led the AgriLife Research-Amarillo team of Rush; Dr. Jackie Rudd, wheat breeder; Jacob Price, associate researcher; and Dr. Ravindra Devkota, assistant research scientist. Lu has since become an assistant professor at the University of Florida.

The research was funded by grants from the Texas Wheat Producers Board, the Texas AgriLife Research Monocot Improvement Program and the Texas Cropping Systems Program. This research will be featured in an upcoming issue of Crop Science journal, Rudd said.

"Our goal was to look at the resistance in a germplasm line that was used to produce a variety of wheat in western Kansas called RonL," he said. "This variety's resistance is well known but the inheritance has not been studied until now."

The first part of the study compared the resistance of a known-susceptible variety to wheat streak mosaic virus, Karl 92, with a known-resistant variety, CO960293-2, which is a parent of the RonL variety, Rudd said.

A Nebraska wheat variety, Mace, which showed a high level of wheat streak mosaic resistance was included in the study, as were TAM 111 and TAM 112, two of the top varieties developed by the Amarillo wheat breeding program and grown in Texas that also show some resistance to the virus in field trials, he said.

The growth chamber experiment confirmed previous field work, Rudd said. Mace and CO960293-2 were highly resistant, while Karl 92 was highly susceptible. Both TAM 111 and TAM 112 were intermediate in resistance, with TAM 112 being slightly better than TAM 111.

For the genetic portion of the study, the Colorado line was crossed with TAM 111 and based on that cross, Lu determined the wheat streak mosaic virus resistance was due to a single dominant gene from the Colorado germplasm line, Rudd said.

Further molecular mapping has found the location of the specific gene that provides the resistance, he said.

Rudd explained that wheat has 21 pairs of chromosomes and this gene was mapped to chromosome 3B, "so we now know the general location, and we are developing molecular markers that can be used to track the gene in wheat breeding programs."

Only the Mace gene with known resistance to wheat streak mosaic virus had been named previously and it is Wsm1, he said.

"Now that we have determined they are different genes, this newly identified gene will be known as Wsm2."

The difference, however, is that Wsm1 is on a chromosomal translocation from intermediate wheat grass, a wild relative of wheat, which means it could carry along some less-desirable characteristics such as lower yields, Rudd said. The Wsm2 gene was identified from a bread wheat that does not have the negative traits associated with it.

"Breeders from throughout the U.S. have been using RonL and other sources of Wsm2," he said. "Now that it has been identified, they can track that through marker-assisted selection."

The AgriLife Research wheat breeding program already has a number of crosses with the Wsm2 gene in it, Rudd said. With this information, they now can develop wheat streak mosaic virus resistant varieties quicker.

Previously, the varieties had to go through a series of field trials to help select for the desired trait, he said. The consistency of seeing the symptoms in the field is environmentally influenced and differs from season to season.

"This way, we can develop resistance without the laborious field testing," Rudd said. "A lot of programs will use this information to accelerate their breeding and increase the levels of resistance in new cultivars."

Dr. Jackie Rudd | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Raiding the rape field
23.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Could a particle accelerator using laser-driven implosion become a reality?

24.05.2018 | Physics and Astronomy

Hot cars can hit deadly temperatures in as little as one hour

24.05.2018 | Health and Medicine

Complementing conventional antibiotics

24.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>