Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A major step forward towards drought tolerance in crops

20.12.2011
UC Riverside discovery creates new blueprint for engineering drought tolerant crops

When a plant encounters drought, it does its best to cope with this stress by activating a set of protein molecules called receptors. These receptors, once activated, turn on processes that help the plant survive the stress.

A team of plant cell biologists has discovered how to rewire this cellular machinery to heighten the plants' stress response – a finding that can be used to engineer crops to give them a better shot at surviving and displaying increased yield under drought conditions.

The discovery, made in the laboratory of Sean Cutler, an associate professor of plant cell biology at the University of California, Riverside, brings drought-tolerant crops a step closer to becoming a reality.

It's the hormones

When plants encounter drought, they naturally produce abscisic acid, a stress hormone that helps them cope with the drought conditions. Specifically, the hormone turns on receptors in the plants, resulting in a suite of beneficial changes that help the plants survive. These changes typically include guard cells closing on leaves to reduce water loss, cessation of plant growth to reduce water consumption and myriad other stress-relieving responses.

The discovery by Cutler and others of abscisic acid receptors, which orchestrate these responses, was heralded by Science magazine as a breakthrough of the year in 2009 due to the importance of the receptor proteins to drought and stress tolerance.

Tweaking the receptor

Working on Arabidopsis, a model plant used widely in plant biology labs, the Cutler-led research team has now succeeded supercharging the plant's stress response pathway by modifying the abscisic acid receptors so that they can be turned on at will and stay on.

"Receptors are the cell's conductors and the abscisic acid receptors orchestrate the specific symphony that elicits stress tolerance," said Cutler, a member of UC Riverside's Institute for Integrative Genome Biology. "We've now figured out how to turn the orchestra on at will."

He explained that each stress hormone receptor is equipped with a lid that operates like a gate. For the receptor to be in the on state, the lid must be closed. Using receptor genes engineered in the laboratory, the group created and tested through more than 740 variants of the stress hormone receptor, hunting for the rare variants that caused the lid to be closed for longer periods of time.

"We found many of these mutations," Cutler said. "But each one on its own gave us only partly what we were looking for. But when we carefully stacked the right ones together, we got the desired effect: the receptor locked in its on state, which, in turn, was able to activate the stress response pathway in plants."

Study results appear in tomorrow's (Dec. 20) issue of the Proceedings of the National Academy of Sciences.

Next, the research team plans to take this basic science from the lab into the field – a process that could take many years.

The research was supported by the National Science Foundation and Syngenta Biotechnology, Inc.

Cutler was joined in the research by Assaf Mosquna (a postdoctoral reseacher and the first author of the research paper), Sang-Youl Park and Jorge Lozano-Juste at UCR; and Francis C. Peterson and Brian F. Volkman at the Medical College of Wisconsin.

UCR's Office of Technology Commercialization has applied for a patent on Cutler's discovery.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>