Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


WSL is first rockfall protection testing lab in Europe to have its own test facility

WSL, the Swiss Federal Institute for Forest, Snow and Landscape Research, has become the first EU-notified testing lab to have its own test facility for rockfall protection systems.

On October 19, it conducted the first type tests in its new capacity. At the facility near Walenstadt, the WSL type-tested to European standard a protection system capable of retaining rocks weighing up to 16 metric tons.

The rock that crashed down the face of a disused quarry near Walenstadt today marks a milestone in practical research at the WSL. The Institute was recognised as an official testing body by Brussels in view of its experience with complex testing procedures and the availability of a test facility for rockfall protection nets operating according to international standards. The measured data are now to be evaluated by Empa, the Swiss Materials Science and Technology Research Institute, as a prelude to the tested system being granted EU-wide approval.

More and more countries are installing new types of rockfall protection systems, while seeking to minimise costs at the same time. Official type-testing is a highly significant procedure for the manufacturers of such systems. The unique position now occupied by the Swiss Federal Institute WSL, as the only testing body in Europe to operate its own test facility, simplifies the approval process.

The WSL has been conducting experimental and computational research into the dynamic load-bearing behaviour of protective structures for many years. It has prior experience in testing various manufacturers' protection systems that have been installed in Switzerland, and, in most cases, subsidised by the government, on behalf of the Federal Office for the Environment (FOEN) and the Expert Commission on Avalanches and Rockfall (EKLS). Its recent recognition as a EU-notified testing body also enhances the standing of the WSL as a noteworthy test institution in the international arena. As a vastly experienced research institute within the domain of the ETH (Swiss Federal Institutes of Technology), the WSL is very well placed to share technological expertise serving the purpose of protection against natural hazards.

Rockfall protection structures are installed in the mountains along transportation routes and to safeguard people and buildings. Modern protective structures can arrest the descent of boulders harnessing mechanical energy of up to 5000 kJ. This figure represents a mass of 16 metric tons travelling at a velocity of 90 km/h. The flexible systems tested in Walenstadt are lighter, easier to install in steep terrain and less expensive than compact reinforced concrete structures offering equivalent performance characteristics. The design of Geobrugg AG that underwent testing consists of interconnected wire ring nets that are mounted on the slope with steel cables and supports

Gottardo Pestalozzi | idw
Further information:

More articles from Materials Sciences:

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

nachricht Scientists develop a semiconductor nanocomposite material that moves in response to light
18.10.2016 | Worcester Polytechnic Institute

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>