Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wearable Electronics

20.06.2013
Highly conductive textiles and paper with aluminum

Jackets with built-in mobile phones, sports clothes that warn you when your heart rate gets too high, wallpaper with glowing patterns—these are not concepts from a science fiction movie, some of them are actually already available, and they may soon become commonplace.



These applications require electrically conductive fibrous materials. Korean researchers have now developed a new process for rendering paper and textile fibers conductive with aluminum. Their report appears in the journal Angewandte Chemie.

Conventional silicon-based electronics are actually not very well-suited to wearable devices because they are brittle, cannot be bent or folded, and must not fall onto a hard surface. This makes “wearable” electronics unthinkable. But they would not just offer opportunities for fun and games, they could also be useful in many areas. They would allow the bodily functions of at-risk or chronically ill patients to be monitored without requiring them to walk around with cables attached to them.

A baby’s sleepwear could sound an alarm if its breathing stops. “Intelligent” protective clothing could constantly indicate the position of field personnel by radio. Textile and paper electronics would also be ideal for novel large-scale interior design elements and security features in buildings.

These types of applications all require a flexible but conductive material that can be applied to a flexible substrate in the form of electronic circuits. Current techniques like printing or vapor deposition are not applicable to fibrous materials because it is not possible to produce a continuous pattern. In addition, these methods are very expensive.

Researchers led by Hye Moon Lee at the Korea Institute of Materials Science and Seung Hwan Ko at the Korea Advanced Institute of Science and Technology have now developed a simple, affordable approach for making conductive textile and paper fibers with aluminum. The paper or textile fibers are first pre-treated with a titanium-based catalyst and then dipped into a solution of an aluminum hydride composite solution. The catalyst is needed to allow the subsequent conversion of the aluminum compound to metallic aluminum to occur at room temperature.

The materials are not simply coated; in fact their fibers absorb the solution. This means that they do not have just a surface layer of aluminum, but are fully saturated. This produces papers and textile fibers with excellent electrical conductivity that can be bent and folded as desired. They can also be cut to any desired shape and size and simply glued or sewn onto an equally flexible support.

About the Author
Dr Hye Moon Lee is Principal Researcher at the Powder & Ceramics Division at Korea Institute of Materials Science and has been working in the preparations of functional nanoparticles and inks for printed electronics for about 10 years. His research is in the area of metallic inks and fabrication of functional electrodes for flexble, stretchable, and wearable electronics with these inks.

Author: Hye Moon Lee, Korea Institute of Materials Science, Changwon (Rep. Korea), mailto:hyelee@kims.re.kr

Title: Highly Conductive Aluminum Textile and Paper for Flexible and Wearable Electronics

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201301941

Hye Moon Lee | Wiley-VCH
Further information:
http://pressroom.angewandte.org

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>