Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wearable Electronics

20.06.2013
Highly conductive textiles and paper with aluminum

Jackets with built-in mobile phones, sports clothes that warn you when your heart rate gets too high, wallpaper with glowing patterns—these are not concepts from a science fiction movie, some of them are actually already available, and they may soon become commonplace.



These applications require electrically conductive fibrous materials. Korean researchers have now developed a new process for rendering paper and textile fibers conductive with aluminum. Their report appears in the journal Angewandte Chemie.

Conventional silicon-based electronics are actually not very well-suited to wearable devices because they are brittle, cannot be bent or folded, and must not fall onto a hard surface. This makes “wearable” electronics unthinkable. But they would not just offer opportunities for fun and games, they could also be useful in many areas. They would allow the bodily functions of at-risk or chronically ill patients to be monitored without requiring them to walk around with cables attached to them.

A baby’s sleepwear could sound an alarm if its breathing stops. “Intelligent” protective clothing could constantly indicate the position of field personnel by radio. Textile and paper electronics would also be ideal for novel large-scale interior design elements and security features in buildings.

These types of applications all require a flexible but conductive material that can be applied to a flexible substrate in the form of electronic circuits. Current techniques like printing or vapor deposition are not applicable to fibrous materials because it is not possible to produce a continuous pattern. In addition, these methods are very expensive.

Researchers led by Hye Moon Lee at the Korea Institute of Materials Science and Seung Hwan Ko at the Korea Advanced Institute of Science and Technology have now developed a simple, affordable approach for making conductive textile and paper fibers with aluminum. The paper or textile fibers are first pre-treated with a titanium-based catalyst and then dipped into a solution of an aluminum hydride composite solution. The catalyst is needed to allow the subsequent conversion of the aluminum compound to metallic aluminum to occur at room temperature.

The materials are not simply coated; in fact their fibers absorb the solution. This means that they do not have just a surface layer of aluminum, but are fully saturated. This produces papers and textile fibers with excellent electrical conductivity that can be bent and folded as desired. They can also be cut to any desired shape and size and simply glued or sewn onto an equally flexible support.

About the Author
Dr Hye Moon Lee is Principal Researcher at the Powder & Ceramics Division at Korea Institute of Materials Science and has been working in the preparations of functional nanoparticles and inks for printed electronics for about 10 years. His research is in the area of metallic inks and fabrication of functional electrodes for flexble, stretchable, and wearable electronics with these inks.

Author: Hye Moon Lee, Korea Institute of Materials Science, Changwon (Rep. Korea), mailto:hyelee@kims.re.kr

Title: Highly Conductive Aluminum Textile and Paper for Flexible and Wearable Electronics

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201301941

Hye Moon Lee | Wiley-VCH
Further information:
http://pressroom.angewandte.org

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>