Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wearable Electronics

20.06.2013
Highly conductive textiles and paper with aluminum

Jackets with built-in mobile phones, sports clothes that warn you when your heart rate gets too high, wallpaper with glowing patterns—these are not concepts from a science fiction movie, some of them are actually already available, and they may soon become commonplace.



These applications require electrically conductive fibrous materials. Korean researchers have now developed a new process for rendering paper and textile fibers conductive with aluminum. Their report appears in the journal Angewandte Chemie.

Conventional silicon-based electronics are actually not very well-suited to wearable devices because they are brittle, cannot be bent or folded, and must not fall onto a hard surface. This makes “wearable” electronics unthinkable. But they would not just offer opportunities for fun and games, they could also be useful in many areas. They would allow the bodily functions of at-risk or chronically ill patients to be monitored without requiring them to walk around with cables attached to them.

A baby’s sleepwear could sound an alarm if its breathing stops. “Intelligent” protective clothing could constantly indicate the position of field personnel by radio. Textile and paper electronics would also be ideal for novel large-scale interior design elements and security features in buildings.

These types of applications all require a flexible but conductive material that can be applied to a flexible substrate in the form of electronic circuits. Current techniques like printing or vapor deposition are not applicable to fibrous materials because it is not possible to produce a continuous pattern. In addition, these methods are very expensive.

Researchers led by Hye Moon Lee at the Korea Institute of Materials Science and Seung Hwan Ko at the Korea Advanced Institute of Science and Technology have now developed a simple, affordable approach for making conductive textile and paper fibers with aluminum. The paper or textile fibers are first pre-treated with a titanium-based catalyst and then dipped into a solution of an aluminum hydride composite solution. The catalyst is needed to allow the subsequent conversion of the aluminum compound to metallic aluminum to occur at room temperature.

The materials are not simply coated; in fact their fibers absorb the solution. This means that they do not have just a surface layer of aluminum, but are fully saturated. This produces papers and textile fibers with excellent electrical conductivity that can be bent and folded as desired. They can also be cut to any desired shape and size and simply glued or sewn onto an equally flexible support.

About the Author
Dr Hye Moon Lee is Principal Researcher at the Powder & Ceramics Division at Korea Institute of Materials Science and has been working in the preparations of functional nanoparticles and inks for printed electronics for about 10 years. His research is in the area of metallic inks and fabrication of functional electrodes for flexble, stretchable, and wearable electronics with these inks.

Author: Hye Moon Lee, Korea Institute of Materials Science, Changwon (Rep. Korea), mailto:hyelee@kims.re.kr

Title: Highly Conductive Aluminum Textile and Paper for Flexible and Wearable Electronics

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201301941

Hye Moon Lee | Wiley-VCH
Further information:
http://pressroom.angewandte.org

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>