Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Researchers Develop Novel Method for Making Electrical Cellulose Fibers

02.10.2014

By using liquid salts during formation instead of harsh chemicals, fibers that conduct electricity can be strengthened, according to a patent issued to a team of researchers at The University of Alabama.

The new method of crafting the fibers could open up normally flimsy materials, such as cotton, to conduct electricity in technologies normally reserved for stronger fibers.


The University of Alabama

Drs. Scott Spear, left, research engineer, and Anwarul Haque, associate professor of aerospace engineering and mechanics, discuss their work while examining a spool of cellulose fiber with polypyrrole in a lab at The University of Alabama.

The process could also make conductive polymer composites, as they are called, less expensive to prepare with fewer harmful environmental side-effects.

Conductive polymers have wide-ranging physical and electrical properties. They are used in applications from organic transistors, coatings for fuel cells, smart textiles and electromagnetic shielding.

However, the process for making conductive polymer composites such as electrically-conductive cotton, wool or nylon is difficult since the mechanical properties, or its strength, are weakened during preparation.

The inventors of the patent are Dr. Scott Spear, a research engineer with UA’s Alabama Innovation and Mentoring of Entrepreneurs, known as AIME; Dr. Anwarul Haque, associate professor of aerospace engineering and mechanics; Dr. Robin Rogers, the Robert Ramsay Chair of Chemistry at UA and director of UA’s Center for Green Manufacturing; Dr. Rachel Frazier, a research engineer at AIME, and Dr. Dan Daly, director of AIME.

The UA researchers worked with polypyrrole, a particularly useful conductive polymer that can be difficult to bind to fibers. To turn the base chemical, pyrrole, into a polymer that can conduct electricity, polypyrrole, it is put through a chemical process using methanol and the iron-containing ferric chloride. Methanol, sometimes called wood alcohol, is a volatile organic compound that is highly toxic to humans.

Polypyrrole made through this method, though, does not stick well to fibers such as cotton. To bind the fibers with the polypyrrole they are dipped in an acidic solvent that degrades the fiber to increase the surface area so the polypyrrole can stick. This degradation, though, weakens the fiber.

The patented method developed at UA would retain much of the fibers strength by using ionic liquids, which are liquid salts at or near room temperature with low volatility that carry an electric charge. The ionic liquids do not degrade the fibers as much, and the process creates nanostructures that result in a stronger composite material. It also makes the composite better at conducting electricity.

The ionic liquids cannot only be used to fabricate conductive polymer composites, but can be used in place of other solvents to create the polypyrrole.

“We get a better absorption of iron on a cotton or nylon fiber in the presence of ionic liquids,” Spear said.

The process is potentially cheaper and environmentally cleaner since using ionic liquids results in much less harmful by-products from the chemical reaction.

“A lot of effort has been made into making cellulose fibers conductive through chemical methods that, from a manufacturing standpoint, are not environmentally friendly,” Haque said. “Our process does away with the use of methanol through the novel use of ionic liquids, which, by their very nature, have a low volatility that essentially eliminates environmental release pathways exhibited by methanol.”

The patented process could impact what are known as smart textiles, clothing often with traditional electronic features woven into the fabric. The UA-developed method, though, could make it easier for the clothing itself to transmit the electric signals. Smart textiles could be employed in protective clothing, medical textiles and other applications foreseen in military, sports, medical, industrial as well as consumer products

“In the future, cloth or fabrics will not only protect the wearer, but also have intelligent built-in features, such as multifunctional sensors or computing devices,” Spear said. “Conductive cotton fiber represents an important component in the development of smart materials for a variety of military, industrial and commercial applications.”

This research is funded by the National Science Foundation.

U.S. Patent Designated No. 8,784,691 was granted July 22 and claims conductive composites prepared from ionic liquids, compositions for preparing the composites and methods of making and using the composites.

Contact Information

Chris Bryant
Public Relations Assistant Director
cbryant@ur.ua.edu
Phone: 205-348-8323

Chris Bryant | newswise
Further information:
http://uanews.ua.edu/

Further reports about: Cellulose Electrical clothing cotton electricity fibers ionic ionic liquids liquids polypyrrole textiles

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>