Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Researchers Develop Novel Method for Making Electrical Cellulose Fibers

02.10.2014

By using liquid salts during formation instead of harsh chemicals, fibers that conduct electricity can be strengthened, according to a patent issued to a team of researchers at The University of Alabama.

The new method of crafting the fibers could open up normally flimsy materials, such as cotton, to conduct electricity in technologies normally reserved for stronger fibers.


The University of Alabama

Drs. Scott Spear, left, research engineer, and Anwarul Haque, associate professor of aerospace engineering and mechanics, discuss their work while examining a spool of cellulose fiber with polypyrrole in a lab at The University of Alabama.

The process could also make conductive polymer composites, as they are called, less expensive to prepare with fewer harmful environmental side-effects.

Conductive polymers have wide-ranging physical and electrical properties. They are used in applications from organic transistors, coatings for fuel cells, smart textiles and electromagnetic shielding.

However, the process for making conductive polymer composites such as electrically-conductive cotton, wool or nylon is difficult since the mechanical properties, or its strength, are weakened during preparation.

The inventors of the patent are Dr. Scott Spear, a research engineer with UA’s Alabama Innovation and Mentoring of Entrepreneurs, known as AIME; Dr. Anwarul Haque, associate professor of aerospace engineering and mechanics; Dr. Robin Rogers, the Robert Ramsay Chair of Chemistry at UA and director of UA’s Center for Green Manufacturing; Dr. Rachel Frazier, a research engineer at AIME, and Dr. Dan Daly, director of AIME.

The UA researchers worked with polypyrrole, a particularly useful conductive polymer that can be difficult to bind to fibers. To turn the base chemical, pyrrole, into a polymer that can conduct electricity, polypyrrole, it is put through a chemical process using methanol and the iron-containing ferric chloride. Methanol, sometimes called wood alcohol, is a volatile organic compound that is highly toxic to humans.

Polypyrrole made through this method, though, does not stick well to fibers such as cotton. To bind the fibers with the polypyrrole they are dipped in an acidic solvent that degrades the fiber to increase the surface area so the polypyrrole can stick. This degradation, though, weakens the fiber.

The patented method developed at UA would retain much of the fibers strength by using ionic liquids, which are liquid salts at or near room temperature with low volatility that carry an electric charge. The ionic liquids do not degrade the fibers as much, and the process creates nanostructures that result in a stronger composite material. It also makes the composite better at conducting electricity.

The ionic liquids cannot only be used to fabricate conductive polymer composites, but can be used in place of other solvents to create the polypyrrole.

“We get a better absorption of iron on a cotton or nylon fiber in the presence of ionic liquids,” Spear said.

The process is potentially cheaper and environmentally cleaner since using ionic liquids results in much less harmful by-products from the chemical reaction.

“A lot of effort has been made into making cellulose fibers conductive through chemical methods that, from a manufacturing standpoint, are not environmentally friendly,” Haque said. “Our process does away with the use of methanol through the novel use of ionic liquids, which, by their very nature, have a low volatility that essentially eliminates environmental release pathways exhibited by methanol.”

The patented process could impact what are known as smart textiles, clothing often with traditional electronic features woven into the fabric. The UA-developed method, though, could make it easier for the clothing itself to transmit the electric signals. Smart textiles could be employed in protective clothing, medical textiles and other applications foreseen in military, sports, medical, industrial as well as consumer products

“In the future, cloth or fabrics will not only protect the wearer, but also have intelligent built-in features, such as multifunctional sensors or computing devices,” Spear said. “Conductive cotton fiber represents an important component in the development of smart materials for a variety of military, industrial and commercial applications.”

This research is funded by the National Science Foundation.

U.S. Patent Designated No. 8,784,691 was granted July 22 and claims conductive composites prepared from ionic liquids, compositions for preparing the composites and methods of making and using the composites.

Contact Information

Chris Bryant
Public Relations Assistant Director
cbryant@ur.ua.edu
Phone: 205-348-8323

Chris Bryant | newswise
Further information:
http://uanews.ua.edu/

Further reports about: Cellulose Electrical clothing cotton electricity fibers ionic ionic liquids liquids polypyrrole textiles

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>