Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twisting magnets enhance data storage capacity

12.02.2016

Members of a research collaboration have succeeded in experimentally verifying the properties of crystals of chiral magnetic materials, which may lead to the development of new types of magnetic memories with unprecedented storage capacities. The collaboration "A Consortium to Exploit Spin Chirality in Advanced Materials" was established in 2015 between scientists in several countries including Japan, Russia, and the UK.

"It is a great success for our international consortium, as we achieved the result effectively by taking advantage of the organization that is composed of experts in various research fields," said Katsuya Inoue, the Japanese coordinator of the consortium and professor Hiroshima University's Graduate School of Science.


(a) This figure shows the crystal structure of a chiral crystal of CrNb3S6 (b) Magnetic twists formed in the chiral crystal are schematically illustrated by an array of bar magnets arranged in the form of a spiral. The period of the helix L(H) is controlled by changing the external magnetic field H.

Credit: Yoshihiko Togawa, Osaka Prefecture University

Magnetic materials with chiral crystalline structures, also known as chiral magnets (for example, CrNb3S6), show a unique magnetic twisting effect that is triggered by a weak external magnetic field. The material looks like it is composed of atomic-sized magnets arranged helically, as shown in the figure (b).

In December 2015, researchers experimentally showed that the winding number of the twists can be detected electrically, and controlled by changing the strength of the external magnetic field. They designed a tiny device about the size of a human cell from CrNb3S6, and observed that the electrical resistance takes a series of discrete values that changes stepwise with change in the external magnetic field strength.

It was also visually demonstrated by using electron microscopy that the change in the electrical resistance corresponds to the change in the twisting of the magnetic field in the material. Using the device, the researchers reported data of 20 discrete states and were successful in unambiguously detecting these states.

Conventional electronic devices used as components in current electronic appliances handle information as binary data represented by a combination of "0" and "1". In magnetic materials, these two states correspond to the orientations of the magnetic field, namely "up" and "down".

However, new devices made from chiral magnets handle information as combinations of multiple digits corresponding to the multiple twists formed in the chiral magnets.

Dr. Yoshihiko Togawa from Osaka Prefecture University, who is the leader of the research team, said, "For example, the capacity of a storage memory device composed of 10 such new element devices made from chiral magnets, each of which has 10 discrete states, will be 10,000,000,000, which is about 10 million times larger than that of a conventional magnetic storage memory with the same number of conventional element devices."

Further studies are ongoing with respect to both scientific and technological aspects of these findings that target future practical applications, such as multiple-valued magnetic memories, sensors or logic devices with high storage capacities owing to the unique characteristic features of this material.

###

Published article:

Y. Togawa et al., Magnetic soliton confinement and discretization effects arising from macroscopic coherence in a chiral spin soliton lattice, Phys. Rev. B 92, 220412(R) (2014).

DOI http://dx.doi.org/10.1103/PhysRevB.92.220412

Authors and their affiliations:

Y. Togawa1,2,3,4, T. Koyama5, Y. Nishimori1, Y. Matsumoto1, S. McVitie3, D. McGrouther3, R. L. Stamps3, Y. Kousaka4,6,7, J. Akimitsu4,6,7, S. Nishihara4,7, K. Inoue4,7,8, I. G. Bostrem9, Vl. E. Sinitsyn9, A. S. Ovchinnikov9, and J. Kishine4,10 1Department of Physics and Electronics, Osaka Prefecture University, 1-2 Gakuencho, Sakai, Osaka 599-8570, Japan 2JST, PREST, 4-1-8 Honcho Kawaguchi, Saitama 333-0012, Japan 3School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom 4Centre for Chiral Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan 5Department of Materials Science, Osaka Prefecture University, 1-1 Gakuencho, Sakai, Osaka 599-8531, Japan 6Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan 7Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan 8IAMR, Facility of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan 9Institute of Natural Sciences, Ural Federal University, Ekaterinburg, 620083, Russia 10Division of Natural and Environmental Sciences, The Open University of Japan, Chiba, 261-8586, Japan

Norifumi Miyokawa | EurekAlert!

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>