Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twisting magnets enhance data storage capacity

12.02.2016

Members of a research collaboration have succeeded in experimentally verifying the properties of crystals of chiral magnetic materials, which may lead to the development of new types of magnetic memories with unprecedented storage capacities. The collaboration "A Consortium to Exploit Spin Chirality in Advanced Materials" was established in 2015 between scientists in several countries including Japan, Russia, and the UK.

"It is a great success for our international consortium, as we achieved the result effectively by taking advantage of the organization that is composed of experts in various research fields," said Katsuya Inoue, the Japanese coordinator of the consortium and professor Hiroshima University's Graduate School of Science.


(a) This figure shows the crystal structure of a chiral crystal of CrNb3S6 (b) Magnetic twists formed in the chiral crystal are schematically illustrated by an array of bar magnets arranged in the form of a spiral. The period of the helix L(H) is controlled by changing the external magnetic field H.

Credit: Yoshihiko Togawa, Osaka Prefecture University

Magnetic materials with chiral crystalline structures, also known as chiral magnets (for example, CrNb3S6), show a unique magnetic twisting effect that is triggered by a weak external magnetic field. The material looks like it is composed of atomic-sized magnets arranged helically, as shown in the figure (b).

In December 2015, researchers experimentally showed that the winding number of the twists can be detected electrically, and controlled by changing the strength of the external magnetic field. They designed a tiny device about the size of a human cell from CrNb3S6, and observed that the electrical resistance takes a series of discrete values that changes stepwise with change in the external magnetic field strength.

It was also visually demonstrated by using electron microscopy that the change in the electrical resistance corresponds to the change in the twisting of the magnetic field in the material. Using the device, the researchers reported data of 20 discrete states and were successful in unambiguously detecting these states.

Conventional electronic devices used as components in current electronic appliances handle information as binary data represented by a combination of "0" and "1". In magnetic materials, these two states correspond to the orientations of the magnetic field, namely "up" and "down".

However, new devices made from chiral magnets handle information as combinations of multiple digits corresponding to the multiple twists formed in the chiral magnets.

Dr. Yoshihiko Togawa from Osaka Prefecture University, who is the leader of the research team, said, "For example, the capacity of a storage memory device composed of 10 such new element devices made from chiral magnets, each of which has 10 discrete states, will be 10,000,000,000, which is about 10 million times larger than that of a conventional magnetic storage memory with the same number of conventional element devices."

Further studies are ongoing with respect to both scientific and technological aspects of these findings that target future practical applications, such as multiple-valued magnetic memories, sensors or logic devices with high storage capacities owing to the unique characteristic features of this material.

###

Published article:

Y. Togawa et al., Magnetic soliton confinement and discretization effects arising from macroscopic coherence in a chiral spin soliton lattice, Phys. Rev. B 92, 220412(R) (2014).

DOI http://dx.doi.org/10.1103/PhysRevB.92.220412

Authors and their affiliations:

Y. Togawa1,2,3,4, T. Koyama5, Y. Nishimori1, Y. Matsumoto1, S. McVitie3, D. McGrouther3, R. L. Stamps3, Y. Kousaka4,6,7, J. Akimitsu4,6,7, S. Nishihara4,7, K. Inoue4,7,8, I. G. Bostrem9, Vl. E. Sinitsyn9, A. S. Ovchinnikov9, and J. Kishine4,10 1Department of Physics and Electronics, Osaka Prefecture University, 1-2 Gakuencho, Sakai, Osaka 599-8570, Japan 2JST, PREST, 4-1-8 Honcho Kawaguchi, Saitama 333-0012, Japan 3School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom 4Centre for Chiral Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan 5Department of Materials Science, Osaka Prefecture University, 1-1 Gakuencho, Sakai, Osaka 599-8531, Japan 6Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan 7Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan 8IAMR, Facility of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan 9Institute of Natural Sciences, Ural Federal University, Ekaterinburg, 620083, Russia 10Division of Natural and Environmental Sciences, The Open University of Japan, Chiba, 261-8586, Japan

Norifumi Miyokawa | EurekAlert!

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>