Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique simplifies the creation of high-tech crystals

23.07.2014

Highly purified crystals that split light with uncanny precision are key parts of high-powered lenses, specialized optics and, potentially, computers that manipulate light instead of electricity. But producing these crystals by current techniques, such as etching them with a precise beam of electrons, is often extremely difficult and expensive.

Now, researchers at Princeton and Columbia universities have proposed a new method that could allow scientists to customize and grow these specialized materials, known as photonic crystals, with relative ease.

Sorting Crystal Shapes

In this graphic representation of the analysis, colloids form the initial two layers of a crystal, at left. With the addition of the third layer, the crystal forms one of two possible shapes, which are shown at right. The vertical blue line to the right of each crystal shows a representative shape of the polymer when confined in the voids between colloids in each crystal.

Credit: Nathan Mahynski et al

"Our results point to a previously unexplored path for making defect-free crystals using inexpensive ingredients," said Athanassios Panagiotopoulos, the Susan Dod Brown Professor of Chemical and Biological Engineering and one of the paper's authors. "Current methods for making such systems rely on using difficult-to-synthesize particles with narrowly tailored directional interactions."

In an article published online July 21 in the journal Nature Communications, the researchers proposed that photonic crystals could be created from a mixture in which particles of one type are dispersed throughout another material. Called colloidal suspensions, these mixtures include things like milk or fog. Under certain conditions, these dispersed particles can combine into crystals.

Creating solids from colloidal suspensions is not a new idea. In fact, humans have been doing it since the invention of cheese and the butter churn. But there is a big difference between making a wheel of cheddar and a crystal pure enough to split light for an optical circuit.

One of the main challenges for creating these optical crystals is finding a way to create uniform shapes from a given colloidal mixture. By definition, crystals' internal structures are arranged in an ordered pattern. The geometry of these patterns determines how a crystal will affect light. Unfortunately for optical engineers, a typical colloidal mixture will produce crystals with different internal structures.

In their paper, the researchers demonstrate a method for using a colloidal suspension to create crystals with the uniform structures needed for high-end technologies.

Essentially, the researchers showed that adding precisely sized chains of molecules – called polymers – to the colloid mixture allows them to impose order on the crystal as it forms.

"The polymers control what structures are allowed to form," said Nathan Mahynski, a graduate student in chemical and biological engineering at Princeton and the paper's lead author. "If you understand how the polymer interacts with the colloids in the mixture, you can use that to create a desired crystal."

The researchers created a computer model that simulated the formation of crystals based on principles of thermodynamics, which state that any system will settle into whatever structure requires the least energy. Panagiotopoulos's group analyzed the equilibrium state of different possible crystal shapes to understand how they were affected by the presence of different polymers.

They found that when the crystals formed, tiny amounts of polymer were trapped between the colloids as they came together. It looks like mortar in a stone wall, although the researchers say the polymer has no adhesive property. These polymer-filled spaces, called interstices, play a key role in determining the energy state of a crystal.

"Changing the polymer affects which crystal form is most stable," Mahynski said. "As the crystal forms, the polymer helps set the crystal's shape."

The polymer and the forming crystal work like a lock and key – they fit together in the crystal structure with the lowest energy state. Because of this, scientists can use their knowledge of polymer physics to tailor crystal structures.

Because the researchers conducted their analysis using computer modeling, they cautioned that experimentally reproducing the results in a lab presents some difficult challenges. One early concern involved the uniformity of colloids in the suspension; models often assume colloids are all the same shape and size but this rarely occurs in natural systems. Anticipating this, the researchers tested their theory using a non-uniform solution.

"One of the things we did in our study was to look at realistic systems, that were realizable in the lab, and it appears that the phenomenon that we describe is robust," said Sanat Kumar, a professor and chair of chemical engineering at Columbia and a researcher on the project. "That tells us that there is no conceptual problem to realizing this in the lab."

Gravity could also pose a problem for experimenters, although Kumar pointed out that similar experiments have overcome this difficulty. Gravity causes crystals to filter to the bottom of a container and pack in mismatched layers. This can make it very difficult, and perhaps impractical, to try to produce the crystals by using a colloid mix in a tank.

But Mahynski said there are several techniques that could avoid problems. For example, to deal with gravity, researchers could create the crystals in a very thin film. That approach should avoid the disruption of gravity pulling the crystals to the bottom.

It also could be important to select the right size of colloid and type of polymer for a successful experimental result. Panagiotopoulos said that one possible path for these ideas to be experimentally verified will be to use polymer chains that are stiff, such as double-stranded DNA, together with micrometer-sized colloids.

###

Besides Panagiotopoulos, Kumar and Mahynski, the paper's authors also included Dong Meng, a postdoctoral researcher at Columbia. Support for the project was provided in part by the National Science Foundation.

John Sullivan | Eurek Alert!
Further information:
http://www.princeton.edu/main/

More articles from Materials Sciences:

nachricht Clay nanotube-biopolymer composite scaffolds for tissue engineering
02.05.2016 | Kazan Federal University

nachricht Personal cooling units on the horizon
29.04.2016 | Penn State

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Identifying drug targets for leukaemia

02.05.2016 | Life Sciences

Clay nanotube-biopolymer composite scaffolds for tissue engineering

02.05.2016 | Materials Sciences

NASA's Fermi Telescope helps link cosmic neutrino to blazar blast

02.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>