Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stretching molecules yields new understanding of electricity

11.06.2010
Finding presents a powerful new tool for nanoscale science experiments

Cornell University researchers recently stretched individual molecules and watched electrons flow through them, proving that single-molecule devices can be used as powerful new tools for nanoscale science experiments.

The finding, reported in the June 11 issue of the journal Science, probes the effects of strong electron interactions that can be important when shrinking electronics to their ultimate small size limit--single-molecule devices. The work resulted in the first precision tests of a phenomenon known as the underscreened Kondo effect.

"The main advance in our work is that we show single-molecule devices can be very useful as scientific tools to study an interesting phenomenon that has never before been experimentally accessible," said Dan Ralph, the Cornell physics professor who led the study.

The research was funded in part by the Cornell Center for Materials Research, which is supported by the National Science Foundation's (NSF) Division of Materials Research. NSF's Division of Chemistry also contributed to the project.

"Single-molecule devices can indeed be used as model systems for making detailed quantitative studies of fundamental physics inaccessible by any other technique," said first author Joshua Parks, a postdoctoral associate in Cornell's Department of Chemistry and Chemical Biology.

Using a cobalt-based complex cooled to extremely low temperatures, Ralph, Parks and an international team of researchers watched electrons move through single molecules and accomplished a feat that until now escaped chemists and physicists. They were able to study the resistance of the flow of electricity within a system's electric field as the temperature approaches absolute zero.

This is known as the Kondo effect.

In physics, the Kondo effect is perhaps the most important model for understanding how electrons interact within a system such as a molecule. Because of the Kondo effect, when a spinning molecule is attached to electrodes, interactions between the molecule and electrons lead to coordinated motion of the electrons, resulting in a localized cloud of electrons that cancels out the molecule's spin and permits the electrons to flow with decreasing resistance as the temperature approaches zero degrees Kelvin, -273 degrees Fahrenheit.

However, theories since 1980 have also predicted for certain types of high-spin molecules the possibility of an underscreened Kondo effect, in which the spin of the molecule is not completely cancelled and the resulting correlations between the flowing electrons are not as complete.

The researchers tested the Kondo effect by placing the cobalt-based complex between two electrodes and slowly stretching individual spin-containing molecules. They were able to manipulate the molecule's magnetic properties and make precise tests of how electrical resistance changes with variations in temperature. The results were found to be in good agreement with predictions for the underscreened Kondo effect.

"The research shows mechanical control can be a realistic strategy for manipulating molecular spin states, to supplement or replace the use of magnetic fields in proposed applications such as quantum computing or information storage," said Parks.

Researchers from the Institute for Solid State Research and Institute for Advanced Simulation, Germany and the Bariloche Atomic Center and the Balseiro Institute, Argentina participated in this study.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Materials Sciences:

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

nachricht Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>