Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell proliferation and differentiation observed within hydrogel

12.04.2013
CWRU research developing technique with promise to guide formation of complex tissues

Stem cells can be coaxed to grow into new bone or new cartilage better and faster when given the right molecular cues and room inside a water-loving gel, researchers at Case Western Reserve University show.

By creating a three-dimensional checkerboard—one with alternating highly connected and less connected spaces within the hydrogel—the team found adjusting the size of the micropattern could affect stem cell behaviors, such as proliferation and differentiation.

Inducing how and where stem cells grow—and into the right kind of cell in three dimensions—has proven a challenge to creating useful stem cell therapies. This technique holds promise for studying how physical, chemical and other influences affect cell behavior in three-dimensions, and, ultimately, as a method to grow tissues for regenerative medicine applications.

"We think that control over local biomaterial properties may allow us to guide the formation of complex tissues," said Eben Alsberg, an associate professor of Biomedical Engineering at Case Western Reserve. "With this system, we can regulate cell proliferation and cell-specific differentiation into, for example, bone-like or cartilage-like cells."

Oju Jeon, PhD, a postdoctoral researcher in Biomedical Engineering, pursued this work with Alsberg. Their work is described April 11, 2013 in the online edition of Advanced Functional Materials.

Hydrogels are hydrophilic three-dimensional networks of water-soluble polymers bonded, or crosslinked, to one another. Crosslinks increase rigidity and alter the porous structure inside the gel.

Alsberg and Jeon used a hydrogel of oxidized methacrylated alginate and an 8-arm poly(ethylene glycol) amine. A chemical reaction between the alginate and the poly(ethylene glycol) creates crosslinks that provide structure within the gel.

They tweaked the mix so that a second set of crosslinks forms when exposed to light. They used checkerboard masks to create patterns of alternating singly and doubly crosslinked spaces.

The spaces, which varied in size at 25, 50, 100 and 200 micrometers across, were evenly singly and doubly crosslinked.

Human stem cells isolated from fat tissue were encapsulated in the singly and doubly crosslinked regions. The doubly-crosslinked spaces are comparatively cluttered with structures. The cells grew into clusters in the singly-crosslinked regions, but remained mostly isolated in the doubly crosslinked regions.

The larger the spaces in the checkerboard, the larger the clusters grew.

Cells were cultivated in media that promote differentiation into either bone or cartilage.

In both the singly and doubly crosslinked spaces, stem cells increasingly differentiated according to the media composition as the space size increased. The results were more dramatic in the singly-crosslinked spaces.

"Potentially, what's happening is the single-crosslinked regions allow better nutrient transport and provide more space for cells to interact and, because it's less restrictive, there's space for new cells and matrix production," Alsberg said. "Cluster formation, in turn, may influence proliferation and differentiation. Differences in mechanical properties between regions likely also regulate the cell behaviors."

The researchers are continuing to use micropatterning to understand the influences of biomaterials on stem cell fate decisions. This approach may permit local control over cell behavior and, ultimately, allow the engineering of complex tissues comprised of multiple cell types using a single stem cell source.

The National Institutes of Health grants AR061265 and DE022376 funded the research.

Alsberg has received more than $3.6 million in grants this academic year to study ways to engineer or regenerate bone, cartilage and growth plate.

Kevin Mayhood | EurekAlert!
Further information:
http://www.case.edu

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>