Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Alloys - new research group at the Max-Planck-Institut Düsseldorf

18.07.2012
A new research group named "Adaptive Structural Materials" has been established at the Max-Planck-Institut für Eisenforschung GmbH (MPIE) in Düsseldorf.

The group is funded by a European Research Council Advanced Grant, awarded in January 2012 to Prof. Dierk Raabe and Prof. Jörg Neugebauer, both directors at the MPIE.


Logo of the group showing the intimate coupling between experiment and theory: The red fields show EBSD images of a material before and after phase transformation. The black/grey surface shows the energy dependence of a stable and unstable phase.

The new research group is introducing an innovative concept into the world of alloy design combining theory and experiment. The aim is the development of new superior materials with smart microstructures capable of adapting to external environmental changes.

The group is run by two scientists: Dr. Blazej Grabowski, theoretical physicist, and Dr. Cem Tasan, materials scientist. This rather unconventional formation is attributed to the high complexity of the enterprise and to the employed alloy design ideas. One of the design strategies is to introduce nanosized metastable particles into the microstructure of the new alloys.

The meta-stability is a challenging but crucial requirement allowing the nanoparticles to transform quickly under applied stress. This phase transformation can strengthen the material, or create a self-healing effect. "Imagine a crack which has just nucleated in the material", says Grabowski. "As soon as the crack tip reaches one of the metastable particles, the stress induced by the crack tip forces the phase of the particle to transform. The accompanying volume change or the resulting stress field from such a transformation may stop the nanocrack from further expanding." Such mechanisms can function efficiently only for very delicately tuned microstructures and only in narrow concentration ranges. Achieving optimal conditions is an enormous challenge and requires a close collaboration of the two scientists and their team of researchers.

Metastable phases are difficult to analyse experimentally, but with DFT methods (density functional theory) which are based on quantum-mechanical principles, the parameters can be set to a point where the system is metastable. Thus the properties can be calculated under any given conditions. Parameters such as temperature, stress or volume can be changed in small steps until the phase transforms. Theory can predefine not only conditions but also compositions and thus reduce time and material needed for finding the optimum alloy.

On the other hand experimentalists have to validate the calculations. Thorough analysis of phases and phase changes is a crucial point. A unique combination of microscopic and mechanical characterization equipment at the MPIE enables the scientists to carry out in-situ investigations of such stress-induced microstructural transformations. Tasan further cooperates with the metallurgical and processing group, who will eventually produce the smart alloys. "Nowhere else than here at the MPIE would the realisation of this project be feasible", states Tasan, "the close cooperation of physicists, materials scientists, and metallurgists and the availability of metallurgical production sites and sophisticated analysis methods are a precious advantage."

The two group leaders are getting their research up to full speeds. Four doctoral students and three post-docs will soon support them.

Yasmin Ahmed Salem | Max-Planck-Institut
Further information:
http://www.mpie.de
http://www.mpie.de/index.php?id=3738

More articles from Materials Sciences:

nachricht Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells
22.11.2017 | University of California - San Diego

nachricht Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>