Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Alloys - new research group at the Max-Planck-Institut Düsseldorf

18.07.2012
A new research group named "Adaptive Structural Materials" has been established at the Max-Planck-Institut für Eisenforschung GmbH (MPIE) in Düsseldorf.

The group is funded by a European Research Council Advanced Grant, awarded in January 2012 to Prof. Dierk Raabe and Prof. Jörg Neugebauer, both directors at the MPIE.


Logo of the group showing the intimate coupling between experiment and theory: The red fields show EBSD images of a material before and after phase transformation. The black/grey surface shows the energy dependence of a stable and unstable phase.

The new research group is introducing an innovative concept into the world of alloy design combining theory and experiment. The aim is the development of new superior materials with smart microstructures capable of adapting to external environmental changes.

The group is run by two scientists: Dr. Blazej Grabowski, theoretical physicist, and Dr. Cem Tasan, materials scientist. This rather unconventional formation is attributed to the high complexity of the enterprise and to the employed alloy design ideas. One of the design strategies is to introduce nanosized metastable particles into the microstructure of the new alloys.

The meta-stability is a challenging but crucial requirement allowing the nanoparticles to transform quickly under applied stress. This phase transformation can strengthen the material, or create a self-healing effect. "Imagine a crack which has just nucleated in the material", says Grabowski. "As soon as the crack tip reaches one of the metastable particles, the stress induced by the crack tip forces the phase of the particle to transform. The accompanying volume change or the resulting stress field from such a transformation may stop the nanocrack from further expanding." Such mechanisms can function efficiently only for very delicately tuned microstructures and only in narrow concentration ranges. Achieving optimal conditions is an enormous challenge and requires a close collaboration of the two scientists and their team of researchers.

Metastable phases are difficult to analyse experimentally, but with DFT methods (density functional theory) which are based on quantum-mechanical principles, the parameters can be set to a point where the system is metastable. Thus the properties can be calculated under any given conditions. Parameters such as temperature, stress or volume can be changed in small steps until the phase transforms. Theory can predefine not only conditions but also compositions and thus reduce time and material needed for finding the optimum alloy.

On the other hand experimentalists have to validate the calculations. Thorough analysis of phases and phase changes is a crucial point. A unique combination of microscopic and mechanical characterization equipment at the MPIE enables the scientists to carry out in-situ investigations of such stress-induced microstructural transformations. Tasan further cooperates with the metallurgical and processing group, who will eventually produce the smart alloys. "Nowhere else than here at the MPIE would the realisation of this project be feasible", states Tasan, "the close cooperation of physicists, materials scientists, and metallurgists and the availability of metallurgical production sites and sophisticated analysis methods are a precious advantage."

The two group leaders are getting their research up to full speeds. Four doctoral students and three post-docs will soon support them.

Yasmin Ahmed Salem | Max-Planck-Institut
Further information:
http://www.mpie.de
http://www.mpie.de/index.php?id=3738

More articles from Materials Sciences:

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht Contacting the molecular world through graphene nanoribbons
19.02.2018 | Elhuyar Fundazioa

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>