Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Develop High-performance Steel for Possible Use in ITER Fusion Project

28.10.2008
Researchers at Oak Ridge National Laboratory and the U.S. ITER Project Office, which is housed at ORNL, have developed a new cast stainless steel that is 70 percent stronger than comparable steels and is being evaluated for use in the huge shield modules required by the ITER fusion device.

ITER is a multibillion-dollar international research and development project to demonstrate the scientific and technological feasibility of fusion power and to enable studies of self-heating burning plasmas. It will require hundreds of tons of complex stainless steel components that must withstand the temperatures associated with being in the proximity of a plasma heated to more than 100 million degrees Celsius.

The ITER device will be assembled in Cadarache, France, using components fabricated in the United States and in the other partner nations – China, the European Union, India, Japan, the Republic of Korea and the Russian Federation. It is based on the tokamak concept, in which a hot gas is confined in a torus-shaped vessel using a magnetic field. When operational, the device will produce some 500 MW of fusion power.

Jeremy Busby of the ORNL Materials Science and Technology Division said the ITER shield modules present a particular challenge. “The United States must produce nearly 100 of these modules that are 3–4 tons each and include geometric shapes and openings,” he explained, adding that drilling holes in solid steel would result in the removal and loss of 30 percent of the material.

Busby said casting the steel into a near-final shape was another alternative, but it weakens its properties. “We’re working to improve the materials’ properties to reduce the amount of machining and welding and allow for better performance,” he said. “The use of casting can have potential value engineering benefits resulting in cost savings on the order of 20 to 40 percent as compared to machining, so this could be a fairly significant economic issue, both for ITER and in other future uses.”

Busby and his team have worked on the effort for some 18 months, after being approached by Mike Hechler, USIPO manager of Blanket Shielding and Port Limiter systems. “He talked with us because of ORNL’s materials science expertise,” Busby said. “He was familiar with our industry work and hopeful that we could help provide a solution.”

The team has utilized a science-based approach involving modeling, advanced analytical techniques and industrial experience, building upon past R&D 100 award-winning efforts with other cast steels. The availability of advanced materials property simulations at ORNL also played a significant role. “We have used all the science tools available to us at the laboratory,” Busby added.

The effort began with the preparation of test steel compositions in small batches that will be scaled up to more representative geometries. Focus areas include improvements in fracture properties, tensile strength, microstructure properties, welds, impact properties, corrosion performance and radiation resistance.

Busby is hopeful about when the new material might be needed for ITER. The overall design of the device is being tweaked as part of an international review held earlier this year. “We expect to hear fairly soon about how our cast stainless steel may be used in this groundbreaking project,” he said.

ORNL is managed by UT-Battelle for the Department of Energy. U.S. ITER is a DOE Office of Science project.

Bonnie Hebert | Newswise Science News
Further information:
http://www.ornl.gov/news

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>