Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers physicists find unusual electronic properties in bismuth-based crystalline material

23.02.2009
Material has potential to improve solar cell efficiency, computer chip design

Physicists at Rutgers University have discovered unusual electronic properties in a material that has potential to improve solar cell efficiency and computer chip design.

The scientists determined that a crystal made of bismuth, iron and oxygen can perform an electronic feat typically not feasible with conventional semiconductors. It acts as a reversible diode – essentially an electronic turnstile that lets current flow in one direction under certain conditions and in the opposite direction under different conditions. Traditional semiconductor diodes are not reversible – the direction of current flow that they allow is fixed during fabrication.

The researchers reported their findings today in a paper published in Science Express, an advance web posting of papers to be published in upcoming issues of the journal Science.

The scientists also discovered that diodes made from this material generate current when light falls on them, making the material a potential candidate for future solar cells. The material appears very sensitive to light at the blue end of the spectrum, a property that has the potential to increase solar cell efficiency.

"We've reached the upper limit of efficiency with today's solar cells," said Sang-Wook Cheong, physics professor in the School of Arts and Sciences and one of the paper's five authors. "While we still don't know how efficiently this material will ultimately perform as a solar cell, we do need to keep investigating alternate technologies that show potential for improvement."

The crystal that Cheong and his colleagues investigated is a ferroelectric material, meaning that the crystal exhibits electrical polarization, or alignment. This polarization, which the scientists believe controls the crystal's ability to act as a diode, is known as a "bulk effect" – a characteristic that permeates the whole crystal. In contrast, traditional semiconductors act as diodes based on electrical effects at the interfaces between two different materials.

By applying an external voltage on the ferroelectric crystal, the polarization of the material reverses, along with the direction that the diode allows electricity to flow.

"This could make computer chip designs more flexible," said Cheong. "Engineers could design a single circuit element that performs one task under a certain configuration and another task under a different configuration."

The material belongs to class of crystalline materials known as perovskites, which have two positive ions of very different atomic sizes (in this case, bismuth and iron) bound to negative ions (in this case, oxygen). It has three oxygen atoms for each bismuth and iron atom.

Co-authors of the Science paper are Rutgers postdoctoral research fellow Taekjib Choi, graduate student Young Jai Choi, and associate professor Valery Kiryukhin. Another co-author, SeongSu Lee, was a Rutgers postdoctoral research fellow and is now at the Korea Atomic Energy Research Institute.

The National Science Foundation funded the research. Taekjib Choi was partially supported by a Korea Research Foundation Grant funded by the Korean government.

Carl Blesch | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>