Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Road to the Development of an Instant-on PC

01.02.2011
Development of novel transistor with combined logic and memory functions with power consumption reduced to one-millionth that of conventional devices.

A group headed by Dr. Tsuyoshi Hasegawa, a Principal Investigator at the International Center for Materials Nanoarchitectonics (MANA; Director-General: Masakazu Aono), National Institute for Materials Science (President: Sukekatsu Ushioda), in joint research with a research group under Prof. Takuji Ogawa of the Graduate School of Science, Osaka University, and a research group under Prof. Shu Yamaguchi of the Graduate School of Engineering, The University of Tokyo, succeeded in the development of a novel transistor, the gatom transistor,h which performs both logic and memory functions while reducing power consumption to 1 x 10-6 that of the conventional devices.

Logic elements which are capable of retaining their state (i.e., memory) will be indispensible for the development of instant-on personal computers (PC) and other electronic equipment. The development in this work is expected to accelerate the realization of these devices.

In contrast to conventional transistors, which control the movement of electrons in a semiconductor, the newly-developed gatom transistorh operates by transferring a very small amount of metal atoms in an insulator. By using an insulator, which has higher resistance than a semiconductor, as the base material, and realizing on/off states by transfer of a tiny amount metal atoms in this material, the new device achieves a high on/off ratio on the same level as conventional semiconductor transistors with extremely low power consumption. Furthermore, it was found that the gatom transistorh also operates as a memory element which retains states by control of the operating voltage range.

As non-volatile logic circuits, which reconfigure circuits corresponding to computational results, are able to retain their state even when the power supply is turned off, high expectations are placed on the developed device as a new type of computer circuit for realizing PCs with zero starting time. Conventionally, one glogic element with memoryh was formed by combining a logic element (transistor) and a memory element (memory). However, with the conventional devices, the power consumption required for memory is extremely high, and low power consumption, in which memory power requirements are greatly reduced, had been considered necessary for practical application. The gatom transistorh developed in this research reduces the power consumption required for memory to 1/1,000,000 that of the conventional technology. In addition, because it possesses both logic and memory functions, it is expected to contribute to the realization of neural computing systems.

This research was carried out as part of the research topic gDevelopment of Atom Transistorh (Research Representative: Tsuyoshi Hasegawa) in the research area gResearch of Innovative Material and Process for Creation of Next-generation Electronics Devicesh (Research Supervisor, Dr. Hisatsune Watanabe, President & CEO, Semiconductor Leading Edge Technologies, Inc.), Core Research of Evolutional Science & Technology, Team-based Basic Research (CREST) of the Japan Science and Technology Agency (JST). These results were published online by the scientific journal gApplied Physics Express (APEX)h on December 24, 2010.

For more detail, contact:

Tsuyoshi Hasegawa
International Center for Materials Nanoarchitectonics (MANA)
National Institute for Materials Science
TEL: +81-29-860-4734
E-Mail: hasegawa.tsuyoshi(at)nims.go.jp
For inquiries regarding JST Project, contact:
Naoki Nagata
Department of Inclusive Research Administration,
Innovation Headquarters
Japan Science and Technology Agency
TEL: +81-3-3512-3524
FAX: +81-3-3222-2064
E-MailFcrest(at)jst.go.jp
For general inquiry, contact:
Public Relations Office, NIMS
TEL:+81-29-859-2026
FAX:+81-29-859-2017
E-MailFpr(at)nims.go.jp
Public Relations Division
Japan Science and Technology Agency
5-3 Yonbancho, Chiyoda-ku, Tokyo
102-8666, Japan
TEL: +81-3-5214-8404
FAX: +81-3-5214-8432
E-MailFjstkoho(at)jst.go.jp
Journal information
Title of paper: Volatile/Nonvolatile Dual-Functional Atom Transistor
Authors: Tsuyoshi Hasegawa, Yaomi Itoh, Hirofumi Tanaka, Takami Hino, Tohru Tsuruoka, Kazuya Terabe, Hisao Miyazaki, Kazuhito Tsukagoshi, Takuji Ogawa, Shu Yamaguchi, and Masakazu Aono.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2010/12/p201012240.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>