Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Road to the Development of an Instant-on PC

01.02.2011
Development of novel transistor with combined logic and memory functions with power consumption reduced to one-millionth that of conventional devices.

A group headed by Dr. Tsuyoshi Hasegawa, a Principal Investigator at the International Center for Materials Nanoarchitectonics (MANA; Director-General: Masakazu Aono), National Institute for Materials Science (President: Sukekatsu Ushioda), in joint research with a research group under Prof. Takuji Ogawa of the Graduate School of Science, Osaka University, and a research group under Prof. Shu Yamaguchi of the Graduate School of Engineering, The University of Tokyo, succeeded in the development of a novel transistor, the gatom transistor,h which performs both logic and memory functions while reducing power consumption to 1 x 10-6 that of the conventional devices.

Logic elements which are capable of retaining their state (i.e., memory) will be indispensible for the development of instant-on personal computers (PC) and other electronic equipment. The development in this work is expected to accelerate the realization of these devices.

In contrast to conventional transistors, which control the movement of electrons in a semiconductor, the newly-developed gatom transistorh operates by transferring a very small amount of metal atoms in an insulator. By using an insulator, which has higher resistance than a semiconductor, as the base material, and realizing on/off states by transfer of a tiny amount metal atoms in this material, the new device achieves a high on/off ratio on the same level as conventional semiconductor transistors with extremely low power consumption. Furthermore, it was found that the gatom transistorh also operates as a memory element which retains states by control of the operating voltage range.

As non-volatile logic circuits, which reconfigure circuits corresponding to computational results, are able to retain their state even when the power supply is turned off, high expectations are placed on the developed device as a new type of computer circuit for realizing PCs with zero starting time. Conventionally, one glogic element with memoryh was formed by combining a logic element (transistor) and a memory element (memory). However, with the conventional devices, the power consumption required for memory is extremely high, and low power consumption, in which memory power requirements are greatly reduced, had been considered necessary for practical application. The gatom transistorh developed in this research reduces the power consumption required for memory to 1/1,000,000 that of the conventional technology. In addition, because it possesses both logic and memory functions, it is expected to contribute to the realization of neural computing systems.

This research was carried out as part of the research topic gDevelopment of Atom Transistorh (Research Representative: Tsuyoshi Hasegawa) in the research area gResearch of Innovative Material and Process for Creation of Next-generation Electronics Devicesh (Research Supervisor, Dr. Hisatsune Watanabe, President & CEO, Semiconductor Leading Edge Technologies, Inc.), Core Research of Evolutional Science & Technology, Team-based Basic Research (CREST) of the Japan Science and Technology Agency (JST). These results were published online by the scientific journal gApplied Physics Express (APEX)h on December 24, 2010.

For more detail, contact:

Tsuyoshi Hasegawa
International Center for Materials Nanoarchitectonics (MANA)
National Institute for Materials Science
TEL: +81-29-860-4734
E-Mail: hasegawa.tsuyoshi(at)nims.go.jp
For inquiries regarding JST Project, contact:
Naoki Nagata
Department of Inclusive Research Administration,
Innovation Headquarters
Japan Science and Technology Agency
TEL: +81-3-3512-3524
FAX: +81-3-3222-2064
E-MailFcrest(at)jst.go.jp
For general inquiry, contact:
Public Relations Office, NIMS
TEL:+81-29-859-2026
FAX:+81-29-859-2017
E-MailFpr(at)nims.go.jp
Public Relations Division
Japan Science and Technology Agency
5-3 Yonbancho, Chiyoda-ku, Tokyo
102-8666, Japan
TEL: +81-3-5214-8404
FAX: +81-3-5214-8432
E-MailFjstkoho(at)jst.go.jp
Journal information
Title of paper: Volatile/Nonvolatile Dual-Functional Atom Transistor
Authors: Tsuyoshi Hasegawa, Yaomi Itoh, Hirofumi Tanaka, Takami Hino, Tohru Tsuruoka, Kazuya Terabe, Hisao Miyazaki, Kazuhito Tsukagoshi, Takuji Ogawa, Shu Yamaguchi, and Masakazu Aono.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2010/12/p201012240.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>