Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rice University lab creates self-strengthening nanocomposite

Researchers at Rice University have created a synthetic material that gets stronger from repeated stress much like the body strengthens bones and muscles after repeated workouts.

Work by the Rice lab of Pulickel Ajayan, professor in mechanical engineering and materials science and of chemistry, shows the potential of stiffening polymer-based nanocomposites with carbon nanotube fillers. The team reported its discovery this month in the journal ACS Nano.

The trick, it seems, lies in the complex, dynamic interface between nanostructures and polymers in carefully engineered nanocomposite materials.

Brent Carey, a graduate student in Ajayan's lab, found the interesting property while testing the high-cycle fatigue properties of a composite he made by infiltrating a forest of vertically aligned, multiwalled nanotubes with polydimethylsiloxane (PDMS), an inert, rubbery polymer. To his great surprise, repeatedly loading the material didn't seem to damage it at all. In fact, the stress made it stiffer.

Carey, whose research is sponsored by a NASA fellowship, used dynamic mechanical analysis (DMA) to test their material. He found that after an astounding 3.5 million compressions (five per second) over about a week's time, the stiffness of the composite had increased by 12 percent and showed the potential for even further improvement.

"It took a bit of tweaking to get the instrument to do this," Carey said. "DMA generally assumes that your material isn't changing in any permanent way. In the early tests, the software kept telling me, 'I've damaged the sample!' as the stiffness increased. I also had to trick it with an unsolvable program loop to achieve the high number of cycles."

Materials scientists know that metals can strain-harden during repeated deformation, a result of the creation and jamming of defects -- known as dislocations -- in their crystalline lattice. Polymers, which are made of long, repeating chains of atoms, don't behave the same way.

The team is not sure precisely why their synthetic material behaves as it does. "We were able to rule out further cross-linking in the polymer as an explanation," Carey said. "The data shows that there's very little chemical interaction, if any, between the polymer and the nanotubes, and it seems that this fluid interface is evolving during stressing."

"The use of nanomaterials as a filler increases this interfacial area tremendously for the same amount of filler material added," Ajayan said. "Hence, the resulting interfacial effects are amplified as compared with conventional composites.

"For engineered materials, people would love to have a composite like this," he said. "This work shows how nanomaterials in composites can be creatively used."

They also found one other truth about this unique phenomenon: Simply compressing the material didn't change its properties; only dynamic stress -- deforming it again and again -- made it stiffer.

Carey drew an analogy between their material and bones. "As long as you're regularly stressing a bone in the body, it will remain strong," he said. "For example, the bones in the racket arm of a tennis player are denser. Essentially, this is an adaptive effect our body uses to withstand the loads applied to it.

"Our material is similar in the sense that a static load on our composite doesn't cause a change. You have to dynamically stress it in order to improve it."

Cartilage may be a better comparison -- and possibly even a future candidate for nanocomposite replacement. "We can envision this response being attractive for developing artificial cartilage that can respond to the forces being applied to it but remains pliable in areas that are not being stressed," Carey said.

Both researchers noted this is the kind of basic research that asks more questions than it answers. While they can easily measure the material's bulk properties, it's an entirely different story to understand how the polymer and nanotubes interact at the nanoscale.

"People have been trying to address the question of how the polymer layer around a nanoparticle behaves," Ajayan said. "It's a very complicated problem. But fundamentally, it's important if you're an engineer of nanocomposites.

"From that perspective, I think this is a beautiful result. It tells us that it's feasible to engineer interfaces that make the material do unconventional things."

Co-authors of the paper are former Rice postdoctoral researcher Lijie Ci; Prabir Patra, assistant professor of mechanical engineering at the University of Bridgeport; and Glaura Goulart Silva, associate professor at the Federal University of Minas Gerais, Brazil.

Rice University and the NASA Graduate Student Researchers Program funded the research.

Read the abstract at

Artwork is available for download at
A small block of nanocomposite material proved its ability to stiffen under strain at a Rice University laboratory. (Credit Ajayan Lab/Rice University)
Rice University graduate student Brent Carey positions a piece of nanocomposite material in the dynamic mechanical analysis device. He used the device to compress the material 3.5 million times over about a week, proving that the nanocomposite stiffens under strain. The research is the subject of a new paper in the journal ACS Nano. (Credit Jeff Fitlow/Rice University)

Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to

David Ruth | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>