Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers image atomic structural changes that control properties of sapphires

Materials scientists from Case Western Reserve University and the Institute of Solid State Research in Jülich, Germany have produced particularly clear changes in the atomic structure of sapphire following deformation at high temperatures.

Peering through an electron microscope down to a level where a human hair would seem as wide as a washer and dryer set, they were able to quantify deviations from the regular columns of aluminum and oxygen atoms - the stuff of perfect sapphire crystals. The work, which will be published in the journal Science Friday, Nov. 26, is embargoed until 2 p.m. Thursday, Nov. 25.

These structural changes are called dislocations and include very small rearrangements of some of the aluminum atoms from their normal surroundings of six oxygen atoms to a layout of four surrounding oxygen atoms.

While the changes in structure are minute, they deliver a punch.

In the orderly world of crystals, dislocations can control electrical, chemical and magnetic properties as well as strength and durability. And, the information and imaging technique used in the study can be applied to all crystalline solids, from microchips to thermal protection systems that shield jet engines from extreme heat.

"We imagined this might have been the possible change in structure a year or so ago and now we're able to see how the atoms are moving with respect to one another," said Arthur Heuer, Distinguished University Professor and Kyocera Professor of Ceramics in the department of materials science and engineering at the Case School of Engineering. "The important thing is we were able to image it with atomic resolution."

Peter Lagerlöf, an associate professor of materials science and engineering at Case Western Reserve, noted that "understanding the structure of the dislocations is important because it allows increased understanding of material properties."

Heuer traveled to Julich, Germany, where he worked with Chunlin Jia at the Institute of Solid State Research and Ernst Ruska-Centre for Electron Microscopy. There, using an ultra high magnification transmission electron microscope, the scientists employed negative spherical aberration imaging to a section of synthetic sapphire to see dislocation cores.

This is the first time the technique was applied at subangstrom resolution to structural defects in ceramics.

The scientists were able to distinguish columns of oxygen from columns of aluminum in synthetic sapphire, used to make substrates for specialty advanced computer chips (because of sapphire's good thermal conductivity and electrical resistivity), and grocery store scanners and expensive watch faces (because of sapphire's superior scratch-resistance compared to glass).

Dislocation cores terminate with aluminum atoms and electrical neutrality is maintained as the cores occupy only half of the aluminum sites. A complex mix of six-fold and four-fold coordinated aluminum polyhedra are found in the dislocation cores.

Jacques Castaing, a materials scientist at Laboratorie Physique des Materiaux, CNRS Bellevue, F 92195 Meudon Cedex, France, was not involved in the experiment but with Heuer and Lagerlöf, last year published a theory that the atomic structure would change this way.

Castaing said that being able to see the dislocations, "for the basic knowledge of materials, is very important. These dislocations are everywhere."

Kevin Mayhood | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>