Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Achieve Higher Solar-Cell Efficiency With Zinc-Oxide Coating

23.04.2014

Surface modification allows cell to absorb more light

Engineering researchers at the University of Arkansas have achieved the highest efficiency ever in a 9 millimeter-squared solar cell made of gallium arsenide. After coating the cufflink-sized cells with a thin layer of zinc oxide, the research team reached a conversion efficiency of 14 percent.


University of Arkansas

Yahia Makableh demonstrates how a small array of 9-millimeter, gallium-arsenide solar cells can provide energy for small devices.

A small array of these cells – as few as nine to 12 – generate enough energy for small light-emitting diodes and other devices. But surface modification can be scaled up, and the cells can be packaged in large arrays of panels to power large devices such as homes, satellites, or even spacecraft.

The research team, led by Omar Manasreh, professor of electrical engineering, published its findings in Applied Physics Letters and the April 2014 issue of Solar Energy Materials and Solar Cells.

An alternative to silicon, gallium arsenide is a semiconductor used to manufacture integrated circuits, light-emitting diodes and solar cells. The surface modification, achieved through a chemical synthesis of thin films, nanostructures and nanoparticles, suppressed the sun’s reflection so the cell could absorb more light. But even without the surface coating, the researchers were able to achieve 9-percent efficiency by manipulating the host material.

“We want to increase the efficiency of small cells,” said Yahia Makableh, doctoral student in electrical engineering. “With this specific material, the theoretical maximum is 33 percent efficiency, so we have some work to do. But we’re making progress. The beauty of zinc oxide is that it’s cheap, non-toxic and easy to synthesize.”

Makableh said the surface modification could also be applied to other solar cells, including those made of indium-arsenide and gallium-arsenide quantum dots. Solar cells made of these materials may be able to achieve 63-percent conversion efficiency, which would make them ideal for future development of solar cells.

Makableh used equipment and instrumentation in the College of Engineering’s Optoelectronics Research Lab, which is directed by Manasreh. Researchers in the lab grow and functionalize semiconductors, nanostructured anti-reflection coatings, self-cleaning surfaces and metallic nanoparticles to be used in solar cells. Their ultimate goal is to fabricate and test photovoltaic devices with greater solar-energy conversion efficiency.

Manasreh focuses on experimental and theoretical optoelectronic properties of semiconductors, superlattices, nanostructures and related devices. Since joining the University of Arkansas in 2003, he has received more than $8 million in public research funding from the National Aeronautics and Space Administration, the U.S. Air Force and the National Science Foundation. 

CONTACTS:
Yahia Makableh, doctoral student, electrical engineering
College of Engineering
479-966-6728, ymakable@email.uark.edu

Omar Manasreh, professor, electrical engineering
College of Engineering
479-575-6053, manasreh@uark.edu

Matt McGowan | newswise
Further information:
http://www.uark.edu

More articles from Materials Sciences:

nachricht Personal cooling units on the horizon
29.04.2016 | Penn State

nachricht Exploring phosphorene, a promising new material
29.04.2016 | Rensselaer Polytechnic Institute

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>