Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LCD paint licked

02.05.2002


Walls and curtains could sport liquid-crystal digital displays.


One layer LCDs could lead to smaller, cheaper, lighter gadgets.
© R. Penterman et al.



Homes of the future could change their wallpaper from cream to cornflower blue at the touch of a button, says Dirk Broer. His team has developed paint-on liquid crystal displays (LCDs) that offer the technology.

Liquid crystals are peculiar liquids: their molecules spontaneously line up, rather than being randomly orientated as in a normal liquid. Passing a voltage across the molecules switches their alignment, blocking the transmission of light so a display changes from light to dark.


Current LCDs on digital watches, mobile phones and laptops sandwich the crystal between heavy glass plates. The complicated production process is time-consuming, expensive and restricts the size of screens to just 1 metre square.

Broer and his colleagues have devised a new open-sandwich technique that instead deposits a layer of liquid crystal onto a single underlying sheet. Working at Eindhoven University of Technology and Philips Research Laboratories in the Netherlands, Broer’s team has already produced prototypes on glass and plastic; fabric could be next.

The technique could create giant TV screens, digital billboards and walls that change colour. Slim, plastic LCDs sewn into fabric could display e-mail or text messages on your sleeve. "It depends what future societies want," says Broer.

The technique should feed people’s thirst for smaller, cheaper gadgets. Conventional glass LCDs now make up an increasing part of a laptop’s weight - plastic versions could change that, says Peter Raynes, who studies LCD technology at the University of Oxford, UK.

Crystal glazing

Broer’s team made the LCD paint by mixing liquid crystal with molecules that link together into a rigid polymer when exposed to ultraviolet. In a two-stage process they effectively build tiny boxes holding the liquid1.

They coat a glass or plastic base with a thin layer of the LCD paint and mask out squares so that a blast of ultraviolet forms a grid of walls. When they remove the mask, a second exposure - at a wavelength that does not penetrate the whole liquid layer - seals over the boxes with a lid.

Standard LCDs, which are divided up into pixels, turn dark when a voltage crosses between electrodes on the two glass plates. The new displays instead pass voltage between two points on the same plate. Colour LCDs fit each pixel with red, green and blue colour filters.

"Don’t expect to buy a watch featuring one of the new displays in the next six months," warns Raynes, however. He cautions that the technique needs work: compared with glass, the thin outer layer may be more easily penetrated by oxygen or water that degrade the crystal.

References

  1. Penterman, R. et al. Single-substrate liquid-crystal displays by photo-enforced stratification. Nature, 417, 55 - 58, (2002).


HELEN PEARSON | © Nature News Service

More articles from Materials Sciences:

nachricht Electron tomography technique leads to 3-D reconstructions at the nanoscale
24.05.2018 | The Optical Society

nachricht These could revolutionize the world
24.05.2018 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>