Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


LCD paint licked


Walls and curtains could sport liquid-crystal digital displays.

One layer LCDs could lead to smaller, cheaper, lighter gadgets.
© R. Penterman et al.

Homes of the future could change their wallpaper from cream to cornflower blue at the touch of a button, says Dirk Broer. His team has developed paint-on liquid crystal displays (LCDs) that offer the technology.

Liquid crystals are peculiar liquids: their molecules spontaneously line up, rather than being randomly orientated as in a normal liquid. Passing a voltage across the molecules switches their alignment, blocking the transmission of light so a display changes from light to dark.

Current LCDs on digital watches, mobile phones and laptops sandwich the crystal between heavy glass plates. The complicated production process is time-consuming, expensive and restricts the size of screens to just 1 metre square.

Broer and his colleagues have devised a new open-sandwich technique that instead deposits a layer of liquid crystal onto a single underlying sheet. Working at Eindhoven University of Technology and Philips Research Laboratories in the Netherlands, Broer’s team has already produced prototypes on glass and plastic; fabric could be next.

The technique could create giant TV screens, digital billboards and walls that change colour. Slim, plastic LCDs sewn into fabric could display e-mail or text messages on your sleeve. "It depends what future societies want," says Broer.

The technique should feed people’s thirst for smaller, cheaper gadgets. Conventional glass LCDs now make up an increasing part of a laptop’s weight - plastic versions could change that, says Peter Raynes, who studies LCD technology at the University of Oxford, UK.

Crystal glazing

Broer’s team made the LCD paint by mixing liquid crystal with molecules that link together into a rigid polymer when exposed to ultraviolet. In a two-stage process they effectively build tiny boxes holding the liquid1.

They coat a glass or plastic base with a thin layer of the LCD paint and mask out squares so that a blast of ultraviolet forms a grid of walls. When they remove the mask, a second exposure - at a wavelength that does not penetrate the whole liquid layer - seals over the boxes with a lid.

Standard LCDs, which are divided up into pixels, turn dark when a voltage crosses between electrodes on the two glass plates. The new displays instead pass voltage between two points on the same plate. Colour LCDs fit each pixel with red, green and blue colour filters.

"Don’t expect to buy a watch featuring one of the new displays in the next six months," warns Raynes, however. He cautions that the technique needs work: compared with glass, the thin outer layer may be more easily penetrated by oxygen or water that degrade the crystal.


  1. Penterman, R. et al. Single-substrate liquid-crystal displays by photo-enforced stratification. Nature, 417, 55 - 58, (2002).

HELEN PEARSON | © Nature News Service

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>