Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene oxide paper could spawn a new class of materials

27.07.2007
Nearly 2,000 years ago, the discovery of paper revolutionized human communication. Now researchers at Northwestern University have fabricated a new type of paper that they hope will create a revolution of its own -- and while it won't replace your notepad, this remarkably stiff and strong yet lightweight material should find use in a wide variety of applications.

In a paper to be published July 26 in the journal Nature, researchers led by Rod Ruoff, John Evans Professor of Nanoengineering in the Robert R. McCormick School of Engineering and Applied Science, report on the development of graphene oxide paper.

Ruoff's research team was the first to develop graphene-based composite materials, which was reported in Nature last year. Graphene -- a sheet of carbon only one atom thick -- has the potential to serve as the basis of an entirely new class of materials.

"The mechanical, thermal, optical and electrical properties of graphene are exceptional," says Ruoff. "For example, the stiffness and strength of these graphene-like sheets should be superior to all other materials, with the possible exception of diamond."

To form the graphene oxide paper, the group oxidized graphite to create graphite oxide, which falls apart in water to yield well-dispersed graphene oxide sheets. After filtering the water, the team was able to fabricate pieces of graphene oxide 'paper' more than five inches in diameter and with thicknesses from about one to 100 microns, in which the individual micron-sized graphene oxide sheets are stacked on top of each other.

"I have little doubt that very large-area sheets of this paper-material could be made in the future," Ruoff notes.

In addition to their superior mechanical properties as individual sheets, the graphene oxide layers stack well, which could be key to the development of other materials.

"You can imagine that these microscale sheets may be stacked together and chemically linked, allowing us to further optimize the mechanical properties of the resulting macroscale object," Ruoff says. "This combination of excellent mechanical properties and chemical tunability should make graphene-based paper an exciting material."

Of further interest are the electrical properties of the graphene oxide paper in comparison to graphene sheets. "When we oxidize the graphene sheets to create graphene oxide, the material goes from being an electrical conductor to an electrical insulator," Ruoff says. "This is an important step and in the future it will be possible to tune the material as a conductor, semiconductor or insulator. One will be able to control the electrical properties without sacrificing exceptional mechanical properties."

Ruoff sees a wide variety of applications for graphene oxide paper, including membranes with controlled permeability, and for batteries or supercapacitors for energy applications. Graphene oxide paper could also be infused to create hybrid materials containing polymers, ceramics or metals, where such composites would perform much better than existing materials as components in, for example, airplanes, cars, buildings and sporting goods products.

The development of this paper-like material is the latest of several recent advancements by Ruoff's team in launching the new field of graphene-based materials. In a paper in the July issue of Nano Letters, the group reported that graphene sheets could be embedded into glass films to make them electrically conductive. These transparent thin films could find applications in solar cells or a variety of transparent electronics such as electronic paper and flexible color screens. The processing of these films may provide a cheaper alternative to the widely used indium tin oxide coatings that are typically used as the transparent conductive film.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>