Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon nanotube fabrication versatility is at the heart of innovative new materials growth tool

23.05.2007
Surrey NanoSystems, a joint venture between the University of Surrey’s Advanced Technology Institute and CEVP Ltd, is making its commercial debut at Nanotech 2007, offering what it believes is the most versatile growth tool for carbon nanotube fabrication ever produced, facilitating material growth at 'standard' temperatures in and around the 450-1000 degrees Celsius range, as well as growth at lower temperatures.

Called NanoGrowth 1000n, the new tool is purpose-designed for nanomaterial fabrication and comes with both CVD (chemical vapour deposition) and PECVD (plasma-enhanced CVD) processing capability. These two techniques provide great versatility for users.

Precision fabrication and configuration repeatability principles have been at the core of the tool's architecture, which has been developed by engineers with many years of experience of creating thin-film tools for both scientific research and commercial fabrication. Among the tool's many quality-oriented architectural features are an ultra-high purity gas delivery system and flexible closed-loop control systems that allow users to define target tolerances to achieve a high level of repeatability during all phases of the process.

A very high degree of hardware modularity allows the tool to be expanded easily and configured to meet current and future fabrication requirements. Among many options are further processing techniques such as ICP (inductively coupled plasma), dual sputter sources for catalyst deposition - including a module for delivery of vapour-phase catalysts like ferrocene - plus modules to add process stages for automated pilot production or high throughput. Included in the latter category are an automated wafer transport load/lock system, integrated etching capability, and a PECVD module for deposition of thin-film silicon-based materials.

"This new type of tool addresses the needs of nanomaterial researchers for stable and repeatable results, combined with the flexibility to accommodate individual development ideas. The tool's intrinsic hardware modularity allows users to gain automated control over all aspect of nanomaterial synthesis, from catalyst generation to final material processing," says Dr Guan Yow Chen, Chief Scientist at Surrey NanoSystems.

Users are provided with ready-to-use fabrication programmes. These provide nanomaterial growth 'recipes' in the form of software templates that may be adapted easily by users for their own applications.

Surrey NanoSystems' new carbon nanotube tool is controlled by unique, touch-screen SCADA-style software (supervisory control and data acquisition) – developed and refined over more than seven years on high-end thin-film deposition tools. This software provides an extremely user-friendly interface that sits between the user and the tool - making complex growth or deposition processes both easy to create and run. MIMIC displays of the tool and other graphical techniques provide simple control over all phases of the material growth process, allowing the user to control every aspect - such as gas flow rate, temperatures, RF power, etc – manually or automatically.

Surrey NanoSystems expects the purpose-designed tool to enable nanomaterial researchers to shorten the path to commercialisation. Nanomaterials are expected to have a huge impact on a wide range of next generation technologies such as sensors, interconnects, thermal heat sinks, displays, etc. One of the major goals behind the flexible architecture of the tool is making it possible to commercialise the use of carbon nanotubes and other nanowires in silicon chips - which are approaching their performance limits.

The recipes and patented fabrication technology inside the new tool are field proven, and derived from ground-breaking work by the Advanced Technology Institute (ATI). IP Group Plc provided funding to create Surrey NanoSystems, a corporation dedicated to commercialising the process technology, which was established with staff and intellectual property from ATI and a leading thin-film deposition system manufacturer.

Stuart Miller | alfa
Further information:
http://portal.surrey.ac.uk/portal/page?_pageid=799,1512765&_dad=portal&_schema=PORTAL

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>