Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists track remarkable “breathing” in nanoporous materials

03.04.2007
Scientists all over the world are participating in the quest of new materials with properties suitable for the environmentally friendly and economically feasible separation, recovery, and reuse of vapours and greenhouse gases.

A team of scientists from France, UK and the ESRF have recently discovered an unprecedented giant and reversible swelling of nanoporous materials with exceptional properties: huge flexibility and profound selectivity. They publish their results in Science this week.

Porous hybrid solids are the new materials that could make the world more environmentally friendly. The team from Institut Lavoisier at University of Versailles have developed metal-organic three-dimensional structures with cages and channels (known as MIL, for Material Institut Lavoisier). These compounds contain metal ions (in this case chromium and iron), with organic linkers and are very flexible, and hence, can change shape very easily. They can open up or close down to external factors such as pressure, temperature, light or influence of gases and solvents.

The French researchers, in collaboration with the staff of the Swiss-Norwegian experimental station (called beamline) at the ESRF, have tracked, for the first time, a reversible giant increase in volume of these solids. It ranges from 85% of their size to up the unprecedented 230%. Such a large expansion in crystalline materials has not been observed before. This reversible “breathing” action is similar to the lungs’ function in humans: they grow in size when inhaling and go back to their original size when exhaling. The lungs expand, however, by only around 40%.

The huge swelling effect has been achieved in a simple way: MIL materials were immersed into solvents, and their cavities were filled and thus opened by entering solvent molecules. This made the structures grow, without breaking bonds and retaining the crystallinity of the materials. This process was monitored at the ESRF, using high-quality synchrotron radiation and the experimental results were combined with computer chemistry simulations.

This process can reversed by heating the solvated form the dry form is recovered. In this form, the material exhibited closed pores with almost no accessible porosity. Surprisingly, the same team published a paper last autumn where they showed that some gas molecules can close, but not open, the pores upon absorption. Moreover, the closed hydrated form demonstrates a remarkable selectivity in absorption of polar and nonpolar gases.

The next step for the team now is to investigate how hydrogen or green-house gases can be stored in these kinds of materials. This may open a door to ecological applications such as hydrogen cars or the capture of carbon dioxide in the near future.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr/news/pressreleases/nanoporous/

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>