Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metal deformation studies lead to new understanding of materials at extreme conditions

20.09.2006
Researchers have found a new tool to explore materials at extreme conditions.

By combining very large-scale molecular dynamics simulations with time-resolved data from laser experiments of shock wave propagation through specific metals, scientists at the Lawrence Livermore National Laboratory are now able to better understand the evolution of high-strain-rate plasticity.

Plastic deformation of metals results from the motion of a high density of dislocation lines. A strong shock produces an unusual number of dislocations within a metal's crystalline lattice, which changes the metal's mechanical properties such as strength, ductility and resistance to fracture and cracking.

In a paper published in the Sept. 17 edition of the journal Nature Materials, Livermore researchers, in conjunction with scientists from the University of Oxford, have compared and validated strong shock molecular dynamics simulations to dynamic experimental data in metals.

"We calculated the time needed for the metal to generate defects and relax in a strong shock wave," said Eduardo Bringa, LLNL's lead author of the paper. "We came to understand this time interval in terms of the time needed for line defects (dislocations) to move far enough to relax the strain. It was known that the more dislocations that are produced and the more they move, the more the strain is relaxed."

However, the researchers had a surprise: If the dislocations form too rapidly, they become entangled before they can move far enough to relax the strain. In a ramped pressure wave (rather than an abrupt shock), fewer dislocations form, but they are more effective at relieving the strain because they are freer to move.

"Comprehending this kinetic time scale has unified our understanding of how the tremendous transient stresses in shock waves are compatible with our tried and true understanding of material strength in everyday conditions," said Robert Rudd, an LLNL co-author of the paper.

"This provides a powerful tool to explore new regimes in the emerging field of materials science at extreme conditions, such as those expected in experiments planned for NIF," said Bruce Remington, who leads a group developing such experiments for the National Ignition Facility.

A team including several LLNL researchers previously used time-resolved X-ray diffraction to measure the microscopic lattice response and relaxation behind the shock front in a single crystal piece of copper. The shocked copper relaxed in less than one nanosecond and the current simulations reproduce this timescale. Such large-scale simulations were possible, for the first time, due to the extensive computational power of LLNL supercomputers.

Shock compression of condensed matter occurs in a variety of situations including high-speed automobile and aircraft collisions, explosive welding, armor penetration, meteor impacts, interstellar dust dynamics, and inertial confinement fusion. A detailed understanding of the three-dimensional lattice relaxation process during shock compression beyond the elastic limit had not been achieved previously.

"These results will help us understand what to expect during the extreme material deformation experiments, and better design those experiments," Rudd said. "High rate material deformation is important in explosive fragmentation, penetration, collision, and so on, from the prosaic automobile crash, to the kind of penetration scenarios of interest to homeland security.

The Laboratory's defense-related mission requires an understanding of how metals respond to sudden shock waves and subsequent high-strain-rate deformations. To assess materials properties and performance under extreme deformation conditions, researchers work to understand the fundamental origin of deformation and strength and how the resistance against plastic deformation arises from the collective dynamics of lattice dislocations.

"In our planned materials experiments, we intend to deform a solid-state metal at extraordinary pressures and strain rates," said Remington. "Eduardo has shown us a very promising way for interpreting the results.

Concludes Bringa: "The experiments and simulation combination makes a powerful pair for exploring uncharted even unimagined regimes of material dynamics."

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov/pao/news/releases.html

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>