Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superalloy joining for extreme applications using Transient Liquid Phase diffusion bonding

04.08.2006
TLP diffusion bonding of a ODS nickel alloy

The high mechanical strength and corrosion resistant nature of oxide dispersion strengthened (ODS) superalloys puts them in demand for use in extreme applications such as turbine engines and heat exchangers. Much of their suitability for these applications is derived from their carefully tailored microstructures. Unfortunately some joining methods, like welding, can alter the desirable microstructures and therefore the properties of the superalloy.

Transient Liquid Phase (TLP) diffusion bonding has emerged as a potential joining technique for advanced alloys when fusion welding and other solid state processes are not suitable. The process involves using an interlayer between the surfaces to be bonded. The interlayer contains materials that lower the melting point. At the bonding temperature, which is below the melting temperature of the parent alloy, the interlayer melts and a joint forms by isothermal solidification.

In the present work, R.K. Saka and T.I. Khan of the University of Calgary, used Transient Liquid Phase diffusion bonding to join Inconel MA 758 using nickel based interlayers.

The researchers investigated the effect of interlayer composition, bonding time and the use of post-bond heat treatment on microstructural developments at the joint region. They found that the hold time at the bonding temperature affected the rate of isothermal solidification during the TLP bonding process. They also found that altering the hold time could produce a joint free from deleterious centerline eutectic structures. The formation of intermetallic precipitates adjacent to the joint interface were observed for bonds made using all four interlayers and a proper selection of interlayer composition was shown to reduce precipitation. The use of post-bond heat treatment was also found to help homogenization of the joint microstructure.

Dr. Ian Birkby | EurekAlert!
Further information:
http://www.azonetwork.com
http://www.azom.com/Details.asp?ArticleID=3516

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>