Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Award-winning material

29.06.2006
Designers have something to be pleased about: The new material shines and feels like solid metal – but at the same time it is amazingly light. Researchers at the Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research IFAM in Bremen recently won the renowned IF gold award in the materials and material applications category for developing a new material.

This is how it works: The Bremen-based scientists insert hollow glass balls measuring a maximum of 60 micrometers into the metal during casting. "If the glass balls are evenly distributed, we get a smooth surface that feels absolutely smooth – like metal. If the glass content is unevenly distributed, the material gets a distinctive new appearance, full of streaks," says Dr. Jörg Weise of the foundry technology working group in the Shaping and Functional Materials branch of the institute. Although the material is extremely porous, it looks as smooth as metal and weighs only a fraction of the amount: As an example, the density of aluminum is reduced from 2.7 grams per cubic centimeter to only 1.2 grams per cubic centimeter, and that of zinc from seven grams per cubic centimeter to less than half, or only 3.1 grams per cubic centimeter.

"Our material can’t quite float on water yet, but we’re working on it," Weise predicts with a wink. The aluminum composite material has a density similar to that of a polymer, but feels as high-grade as metal and has a high temperature resistance as well. Despite being so light, it can withstand pressures up to 1 000 bar – equivalent to the pressure at a depth of a thousand meters under water. Its special structure enables the light metal to absorb energy in the event of a crash. There are further benefits, too: "Because its pores are so microscopically small, the material can be plated in a similar way to a compact non-porous metal. We are currently carrying out investigations jointly with an industrial partner, HDO Druckguss- and Oberflächentechnik GmbH of Paderborn, on the possibility of chrome-plating zinc containing hollow glass balls," Weise reports. He believes there are potential applications not only in design elements, but also in the lightweight construction industry.

Monika Weiner | alfa
Further information:
http://www.fraunhofer.de/fhg/EN/press/pi/2006/06/Mediendienst62006Thema3.jsp

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>