Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Award-winning material

29.06.2006
Designers have something to be pleased about: The new material shines and feels like solid metal – but at the same time it is amazingly light. Researchers at the Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research IFAM in Bremen recently won the renowned IF gold award in the materials and material applications category for developing a new material.

This is how it works: The Bremen-based scientists insert hollow glass balls measuring a maximum of 60 micrometers into the metal during casting. "If the glass balls are evenly distributed, we get a smooth surface that feels absolutely smooth – like metal. If the glass content is unevenly distributed, the material gets a distinctive new appearance, full of streaks," says Dr. Jörg Weise of the foundry technology working group in the Shaping and Functional Materials branch of the institute. Although the material is extremely porous, it looks as smooth as metal and weighs only a fraction of the amount: As an example, the density of aluminum is reduced from 2.7 grams per cubic centimeter to only 1.2 grams per cubic centimeter, and that of zinc from seven grams per cubic centimeter to less than half, or only 3.1 grams per cubic centimeter.

"Our material can’t quite float on water yet, but we’re working on it," Weise predicts with a wink. The aluminum composite material has a density similar to that of a polymer, but feels as high-grade as metal and has a high temperature resistance as well. Despite being so light, it can withstand pressures up to 1 000 bar – equivalent to the pressure at a depth of a thousand meters under water. Its special structure enables the light metal to absorb energy in the event of a crash. There are further benefits, too: "Because its pores are so microscopically small, the material can be plated in a similar way to a compact non-porous metal. We are currently carrying out investigations jointly with an industrial partner, HDO Druckguss- and Oberflächentechnik GmbH of Paderborn, on the possibility of chrome-plating zinc containing hollow glass balls," Weise reports. He believes there are potential applications not only in design elements, but also in the lightweight construction industry.

Monika Weiner | alfa
Further information:
http://www.fraunhofer.de/fhg/EN/press/pi/2006/06/Mediendienst62006Thema3.jsp

More articles from Materials Sciences:

nachricht Cementless fly ash binder makes concrete 'green'
19.06.2018 | Rice University

nachricht Ground-breaking discoveries could create superior alloys with many applications
19.06.2018 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>