Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soft materials buckle up for measurement

28.06.2006
Buckling under pressure can be a good thing, say materials scientists at the National Institute of Standards and Technology (NIST). Writing in the June 13 issue of Macromolecules,* they report a new method to evaluate the mechanical properties of soft polymers and gels, such as those used in contact lenses and as tissue-engineering scaffolds. For such applications, stiffness is an indicator for key material performance qualities, such as comfort and durability, and it is important to controlling cell adhesion.

The new method uses "sensor films" with known properties to report the stiffness (or "modulus") of the soft substrates to which they are attached. Compressing the sample causes the sensor film to buckle, resulting in patterns of repeating ridge-like features, akin to corrugated cardboard. The ridge spacing is related to the modulus ratio between the film and the soft substrate. Since the mechanical properties of the sensor film was known, the researchers could calculate the stiffness of the soft material underneath.


NIST researchers developed a new high-speed method for measuring the stiffness of soft-polymer materials like those used in contact lenses. The test material is covered with a sensor film, and the combination is compressed until it buckles. The resulting pattern of ridges is the key to determining stiffness, an important material property. Credit: NIST

In the journal article, the team focuses on results achieved with model soft specimens, such as silicone polymer, and more challenging "hydrogel" specimens (networks of polymers swollen with water). In each case, the researchers tested "gradient" specimens that changed in their mechanical properties across the lengths of a sample. With the sensor film, they could track and measure changes in stiffness in the underlying materials.

This capability makes it possible to "map" spatial variations in rigidity in complex materials and devices. Accordingly, the new method may be a powerful tool to test for flaws or weak regions in soft materials products, the researchers suggest.

Another key aspect of the technique is its speed. The NIST team is working with industrial partners to harness this method as a high-throughput measurement tool for rapidly testing large numbers of soft polymer products. For more information on this aspect of the research, see the NIST Combinatorial Methods Center Web site (www.nist.gov/combi).

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov/combi

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>