Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Growing nanostructures on micro cantilever provides new platform for materials discovery


New nanofabrication technique

Scanning electron microscope image showing carbon nanotubes growing on the heated portion of an atomic force microscope cantilever. Credit: Image courtesy Erik O. Sunden

Researchers have developed a new technique that could provide detailed information about the growth of carbon nanotubes and other nanometer-scale structures as they are being produced. The technique offers a way for researchers to rapidly and systematically map how changes in growth conditions affect the fabrication of nanometer-scale structures.
Instead of a large furnace that is normally used to grow nanotubes as part of the chemical vapor deposition process, the Georgia Institute of Technology researchers grew bundles of nanotubes on a micro-heater built into an atomic force microscope (AFM) tip. The tiny device provided highly-localized heating for only the locations where researchers wanted to grow the nanostructures.

Because the resonance frequency of the cantilever changed as the nanotubes grew, the researchers were able to use it to accurately measure the mass of the structures they produced. The next step in the research will be to combine the growth and measurement processes to permit in situ study of mass change during nanostructure growth.

"There are hundreds of materials – electronic, magnetic and optical – that are grown using a similar thermally-based technique," said William P. King, an assistant professor in Georgia Tech’s School of Mechanical Engineering. "By growing these structures on cantilevers, we will be able to determine exactly what is happening with the materials growth as it occurs. This could provide a new tool for investigating the growth of these structures under different conditions."

Using arrays of cantilevers operating at different temperatures would allow researchers to accelerate the process for mapping the kinetics of nanostructure growth. Because the cantilevers can be heated and cooled more rapidly than a traditional furnace, batches of nanostructures can be produced in just 10 minutes – compared to two hours or more for traditional processing.

"We can change the structures being grown by rapidly changing the temperature," explained Samuel Graham, also an assistant professor in Georgia Tech’s School of Mechanical Engineering. "We can also change the kinetics of growth, which is something that is difficult to do using conventional technology."

By demonstrating that carbon nanotubes can be growth on an AFM cantilever, the technique also provides a new way to integrate nanometer-scale structures with microdevices.

The research was supported in part by the National Science Foundation’s CAREER award, and has been reported in the journal Applied Physics Letters.

King, Graham and collaborators Erik O. Sunden, Jungchul Lee and Tanya L. Wright began with an AFM cantilever fabricated in their Georgia Tech lab. The cantilever had an integrated electric-resistance heater whose output temperature could be controlled by varying the current. Actual heater temperatures were measured to within four degrees Celsius using Laser Raman thermometry.

Calibration of the cantilevers over a large temperature range using Raman spectroscopy was a key aspect of the success of this research, allowing the first detailed temperature maps of these devices, Graham noted.

The researchers used electron beam evaporation to deposit a 10 nanometer iron catalyst film onto the cantilever. After heating, the iron film formed islands that provided catalytic sites for growing nanotubes.

The cantilever was then placed into a quartz tube, which was purged of contaminants with argon gas. The cantilever heating was then turned on and the temperature held at approximately 800 degrees Celsius for 15 minutes. A combination of methane, hydrogen and acetylene – precursors for carbon nanotubes – was then flowed into the chamber. Only the cantilever tip and the reaction gas immediately around it were heated, leaving the remainder of the experimental set-up at room temperature.

After removal from the tube, the cantilever was examined using a scanning electron microscope, which showed vertically aligned carbon nanotubes growing from the cantilever heater region. The nanotubes ranged in length from five to 10 microns, and were 10 to 30 nanometers in diameter. Although the entire cantilever was coated with the iron catalyst, the nanotubes grew only on the heated area. A temperature gradient on the heater created differences in the types of nanotubes grown.

Both before and after the growth, the cantilever was vibrated so its resonance frequency could be measured. Those measurements showed a frequency decline from 119.10 to 118.23 kHz after the nanotubes were grown on the cantilever. After the resonance measurements were made, the cantilever was heated beyond 900 degrees Celsius in air to burn off the nanotubes. When the resonance frequency was measured again, it had changed to 119.09 kHz, showing that the frequency drop had been due to the mass of the nanotubes.

From the change in the resonance frequency, the researchers were able to calculate the mass of the carbon nanotubes they had grown as approximately four picograms (4 x 10-14) kg.

"We are working on integrating the growing and weighing of the nanotubes so we can do both of them at the same time," said King. "That would allow us to monitor the materials growth as it happens."

Once the two processes are integrated, the researchers expect to increase the number of cantilevers operating simultaneously. Cantilever arrays could allow many different growth temperatures and conditions to be measured in parallel, accelerating the task of charting the growth kinetics to determine the optimal settings.

"This is a platform for materials discovery, so we could test tens or even thousands of different chemistry or growth conditions in a very short period of time," King said. "With a thousand cantilevers, we could do in a single day experiments that would take years using conventional growth techniques. Once the right conditions were found, the production process could be scaled up."

John Toon | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht For graphite pellets, just add elbow grease
23.03.2018 | Rice University

nachricht Sensitive grip
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>