Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common clays investigated for use as high tech environmental catalysts

04.04.2006


Textural properties as a function of the starting mineral particle size



Development of new clean technologies in accordance with increasingly demanding environmental legislation requires new catalysts, adsorbents and/or catalyst supports. Clays have been identified as a promising materials resource for this application.
More specifically, Pillared Inter-Layered Clays (PILCs) have been identified as suitable for these purposes. However, their widespread use has been delayed by difficulties in obtaining a uniform and reproducible product.

Engineers and scientists from the Universidad de la República, M. Sergio, M. Musso, J. Medina and W. Diano, studied the influence of the starting material particle size on the textural properties of the pillared clays obtained by using the mineral without any other pretreatment than drying, grinding and sieving.



In their study, they transformed a Uruguayan montmorillonitic mineral into a microporous solid by pillaring. Using three different size fractions, they were in all cases able to produce yields upwards of 90%.

No significant difference was observed for particle sizes below 450 m m. Resultant microporous solids were obtained with specific surface areas over 350 m 2/g and specific total pore volume of about 0.250 mL/g. The specific micropore volumes represented about 70% of the total pore volume. Pore openings, determined by two independent methods, were in the range of 0.7-0.8 nm. The samples calcined at 750 oC retained about 72% of their textural parameter values.

The study showed that a high mineral yield and a simpler manipulation can yield economic advantages in producing microporous solids. The high mineral yield could be used in catalysis and adsorption processes, especially if size or form selectivity are required.

Dr. Ian Birkby | EurekAlert!
Further information:
http://www.azonetwork.com

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>