Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common clays investigated for use as high tech environmental catalysts

04.04.2006


Textural properties as a function of the starting mineral particle size



Development of new clean technologies in accordance with increasingly demanding environmental legislation requires new catalysts, adsorbents and/or catalyst supports. Clays have been identified as a promising materials resource for this application.
More specifically, Pillared Inter-Layered Clays (PILCs) have been identified as suitable for these purposes. However, their widespread use has been delayed by difficulties in obtaining a uniform and reproducible product.

Engineers and scientists from the Universidad de la República, M. Sergio, M. Musso, J. Medina and W. Diano, studied the influence of the starting material particle size on the textural properties of the pillared clays obtained by using the mineral without any other pretreatment than drying, grinding and sieving.



In their study, they transformed a Uruguayan montmorillonitic mineral into a microporous solid by pillaring. Using three different size fractions, they were in all cases able to produce yields upwards of 90%.

No significant difference was observed for particle sizes below 450 m m. Resultant microporous solids were obtained with specific surface areas over 350 m 2/g and specific total pore volume of about 0.250 mL/g. The specific micropore volumes represented about 70% of the total pore volume. Pore openings, determined by two independent methods, were in the range of 0.7-0.8 nm. The samples calcined at 750 oC retained about 72% of their textural parameter values.

The study showed that a high mineral yield and a simpler manipulation can yield economic advantages in producing microporous solids. The high mineral yield could be used in catalysis and adsorption processes, especially if size or form selectivity are required.

Dr. Ian Birkby | EurekAlert!
Further information:
http://www.azonetwork.com

More articles from Materials Sciences:

nachricht Reliable molecular toggle switch developed
30.03.2017 | Karlsruher Institut für Technologie (KIT)

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>