Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fabrication of Nanometer Scale Patterns with Polymer Langmuir-Blodgett Films

18.01.2006


The continuing trend toward higher circuit density in microelectronic devices has motivated research efforts in varieties of high-resolution lithography techniques, including electron beam (EB), X-ray, and deep UV irradiation. Use of ultra-thin films and new materials have been proposed as approaches to improve resolution in lithography. The Langmuir-Blodgett (LB) technique is very effective method used to prepare well-defined ultra-thin film with controlled thickness and orientation at a molecular level. Therefore, LB films are expected to realize ultra-high resolution photolithography [1-4].



In previous studies, [5-7] we have found that N-octadecylacrylamide forms a uniform LB film with a highly ordered structure, and yielded a fine negative pattern by photopolymerization. Furthermore, we have also succeeded in the preparation of preformed polymer LB film that has a cross-linking group [8]. By the cross-linking reaction with deep UV and electron beam irradiation we obtained a fine negative pattern consisting of two-dimensional network. All of these polymer LB films resulted in negative-tone photopatterns. On the other hand, we also obtained positive type photopatterns using poly(N-tetradecylmethacrylamide)(p(TDMA)) LB films without any development process (self-development) [9, 10]. It was found that the higher sensitivity could be obtained by changing the alkyl side chain to the short-branched type [11]. In addition, the deprotection reaction of t-butoxycarbonyloxy group has also been used in positive patterning of polymer LB films [12-14]. Combining these interesting properties, the improvement of not only the sensitivity but also the imaging quality can be expected. In this work, we prepared the copolymers of photodegradable N-tetradecylmethacrylamide (TDMA) with t-butyl 4-vinylphenyl carbonate (tBVPC) (Figure 1) aiming at the fabrication of a new type of positive resist taking place both main chain scission and polarity change caused by t-butoxycarbonyloxy group deprotection.

Dr. Ian Birkby | EurekAlert!
Further information:
http://www.azom.com/Details.asp?ArticleID=3176
http://www.azonetwork.com

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>