Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative RF-magnetron sputtering process creates homogenous BaTiO3 films for high-tech electronics

18.11.2005


Microstructural characterization of BaTiO3 thin films prepared by RF-Magnetron sputtering using sintered targets from high energy ball milled powders



The electronic and optical characteristics of barium titanate (BT) ferroelectric ceramics are of great interest for industrial uses and when grown as thin films they can easily be integrated into modern circuitry. These thin films are commonly prepared by RF- magnetron sputtering using a commercially available BT target as the material source.

The problem with using commercial BT-targets is that they fracture during the cathodic erosion, causing heterogeneities in subsequent film deposition procedures.


In this study, published in AZojomo*, by V. Torres-Heredia, J. Muñoz-Saldaña, F. J. Espinoza Beltrán, A. Márquez Herrera and A. Zapata Navarro from Unidad Querétaro and Unidad Altamira, BaTiO3-thin films were prepared by RF-sputtering using low temperature sintered BT-targets from powders processed by high energy ball milling. The films were deposited onto silicon (Si(111)) substrates coated with indium tin oxide (ITO), where the ITO thin film acts as an electrode. Furthermore, structure and microstructural characterization of the nanocrystalline BT thin films was reported.

Results indicated that the low BT sintering temperatures (950°C) produced the best microstructural properties of the target such as submicrometric grain size (~260 nm). This in turn lead to a high degree of densification and homogeneity. The microstructure of the resultant film was found to be strongly dependent on the annealing temperature, which also influenced internal stresses and the crystalline structure of the film.

Dr. Ian Birkby | EurekAlert!
Further information:
http://www.azonetwork.com
http://www.azom.com/oars.asp
http://www.azom.com/azojomo.asp

More articles from Materials Sciences:

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>