Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping Out a High-Temperature Superconductor

15.09.2005


Researchers at the U.S. Department of Energy’s Brookhaven National Laboratory have discovered a way to significantly increase the amount of electric current carried by a high-temperature superconductor, a material that conducts electricity with no resistance. This is an important step in the drive to create superconductor-based electric and power-delivery devices, such as power transmission lines, motors, and generators. The results are explained in the September 12, 2005, online edition of Applied Physics Letters.



“In theory, superconducting materials can conduct an enormous amount of electric current. But when incorporated into actual devices, certain factors tend to limit the current,” said Brookhaven materials scientist Qiang Li, a co-author on the paper. “We studied these factors and found that one, which we call ‘substrate roughness,’ can actually significantly increase the current-carrying capacity.”

The superconducting material studied here consists of the elements yttrium, barium, copper, and oxygen. Dubbed YBCO, it is a member of a class of copper- and oxygen-containing superconductors called “cuprates.” Cuprates are “high-temperature” superconductors because they superconduct at temperatures much “warmer” than conventional superconductors (although still very cold) — for example, -300°F rather than -440°F. This difference, while not huge, is enough to make cuprates more viable for practical applications than materials that must be kept much colder.


In many of these applications, YBCO films are deposited onto a ‘normal’ metal surface (the “substrate”), forming components known as coated conductors. One of the factors widely thought to degrade the performance of coated conductors is the roughness of the metal surface.

To verify this, Li and his colleagues set out to study and measure how the roughness of the substrate affects the current-carrying capacity of YBCO.

The researchers deposited a YBCO layer onto a substrate prepared with two distinct areas: a rough, corrugated region with nanometer (billionth-of-a-meter) sized ridges and grooves, and a smooth region. This configuration allowed the group to directly compare the behavior of the YBCO film on both surface types. They were able to do this using electrical-transport measurement techniques, which track the amount of supercurrent passing through the material, and “magneto-optical” imaging, a technique used to study superconductors by following their magnetic behavior.

“What we found is remarkable and surprising,” said lead author Zuxin Ye, a graduate student under Li’s supervision. “Rather than limiting the current, the nanoscaled corrugated surface produces more than a 30 percent increase in the supercurrent carried by the YBCO films. This suggests that metal substrates with some degree of roughness at the nanoscale might help improve the performance of high-temperature superconductors.”

The work is the result of a collaboration between scientists in Brookhaven Lab’s Materials Science Department, the Condensed Matter Physics group within the Physics Department, and the Lab’s Center for Functional Nanomaterials. It was supported by the Office of Basic Energy Sciences within the U.S. Department of Energy’s Office of Science.

Laura Mgrdichian | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time

29.06.2017 | Automotive Engineering

Turning the Climate Tide by 2020

29.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>