Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find new mechanism governing particle growth in nanocomposites

02.09.2005


Controlling nanoparticle size


Images show how the size and shape of iron oxide nanoclusters are controlled by interfacial interactions with polymers having various functional groups.



Because the properties of nanoparticles depend so closely on their size, size distribution and morphology, techniques for controlling the growth of these tiny structures is of great interest to materials researchers today.

A research team from the Georgia Institute of Technology and Drexel University has discovered a surprising new mechanism by which polymer materials used in nanocomposites control the growth of particles. Reported on August 28th at the 230th national meeting of the American Chemical Society, the findings could provide a new tool for controlling the formation of nanoparticles.


Growing particles within the confinement of polymer-based structures is one technique commonly used for controlling nanoparticle growth. After formation of the particles, the polymer matrix can be removed – or the resulting nanocomposite used for a variety of applications.

In a series of experiments, the research team found a strong relationship between the chemical reactivity of the polymer and the size and shape of resulting nanoparticles.

"We have concentrated on the reactivity of the polymeric matrix and how that influences the growth of particles," explained Rina Tannenbaum, an associate professor in Georgia Tech’s School of Materials Science and Engineering. "We found that in the melt the key parameter influencing particle size is actually the type of interaction with the polymer. The molecular weight of the polymer and the synthesis temperature are almost insignificant."

In a series of experiments, Tannenbaum and her collaborators created iron oxide nanoparticles within polymer films of different types, including polystyrene, poly(methyl methacrylate, bisphenol polycarbonate, poly(vinylidene di-fluouride) and polysulfone. The polymeric matrix was then decomposed using heat, leaving the particles to be characterized using transmission electron microscopy.

"These polymers spanned a variety of functional groups that differed in the strength and nature of their interactions with the iron oxide particles and in their position along with polymer chain," Tannenbaum explained. "We found that the characteristic nanoparticle size decreased with the increasing affinity – the strength of the interaction – between the polymer and the iron oxide particles."

Specifically, iron oxide particles formed in strongly interacting polymer media tended to be small (10-20 nanometers in diameter) and pyramid-shaped, while those formed in weakly-interacting media tended to be larger (40 to 60 nanometers in diameter) and spherical.

The researchers also found that the length of the polymer chain was only weakly related to the particle growth. "This means that for the same result, we can work in the melt with lower molecular-weight materials and have lower glass transitions," Tannenbaum explained.

Based on the experimental results, Tannenbaum and Associate Professor Nily Dan of Drexel’s Department of Chemical Engineering charted the relationship between average particle size and the reactivity of the polymer interface. That information should help other scientists as they attempt regulate the growth of nanoparticles using polymer reactivity.

Tannenbaum and Dan theorize that the polymer layer surrounding a nanoparticle while it grows favors an optimal interfacial curvature that sets the equilibrium particle characteristics. That may be related to the free energy of the adsorbed polymer layer.

While the researchers focused on iron oxide in this work, they believe the control mechanism should be broadly applicable to other particles and polymeric materials.

Next, the researchers plan to explore the influence of polymers in solution – a more complicated task involving more variables.

"In solution, the situation is much more complicated," Tannenbaum said. "The polymer chains are on the loose, and face competition from the solvent. The chains will be reluctant to adsorb onto the surface of the particles, so we may end up with larger particles than in the melt. In solution, molecular weight of the polymer will have an impact."

The work reported at the American Chemical Society meeting is part of a broader study of how nanoparticles interact with polymers – specifically, the interface between polymer chains and nanoparticles.

"The interface has important fundamental properties," Tannenbaum noted. "When you look at nanocomposites, the interface is a very large component of the whole structure. You can’t look at a nanocomposite as having just two components – the interface is really a third."

Beyond their use as a means for controlling nanoparticle size, nanocomposites may also have applications of their own. Their periodic structure, for instance, can be useful in optical and photonic applications.

John Toon | EurekAlert!
Further information:
http://www.edi.gatech.edu

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>