Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VCU engineers develop new polymer

03.05.2005


New coating becomes water repellant when wet; applications include medical diagnostic equipment



Virginia Commonwealth University chemical engineering team has developed a novel material that becomes water repellent when wet, setting the stage for advances in engineering, medicine and diagnostics.

In the April 26, 2005, issue of the journal Langmuir, a publication of the American Chemical Society, Kenneth J. Wynne, Ph.D., a professor in the VCU School of Engineering’s Department of Chemical Engineering, and Umit Makal, a graduate student at VCU, created a enigmatic polymer that is hydrophilic, or water loving, when dry, and hydrophobic, or water resistant, when wet; opposite of most materials.


Makal drew an analogy of the research to a drop of water in a Teflon-coated pan. "Water in such a pan just rolls off," he said. "On our surface, when the pan is dry, water just loves the surface … it tries to stick to the surface."

"This discovery runs counter to intuition," Wynne said. "Water-induced hydrophobic surfaces may lead to applications for many things, including the testing of bodily fluids, switching devices, drag-reducing coatings and many others.

"Sometimes an engineer wants to guide the flow, or turn off tiny streams of fluid, such as blood, in a test tube, and this kind of phenomenon could be useful in creating channels for that purpose."

Wynne and Makal actually were working to create antimicrobial coatings by incorporating a molecule called hydantoin into fluorine-containing polymer chains. Makal was testing the behavior of water on one of these coatings and observed that the water drops were spreading, wetting the surface.

"After we took the drop off and put it back again, it started hating the water," Makal said. "The surface became water repellent where the original drop of water had been."

Wynne and Makal concluded that the change was caused by a rearrangement of the polymer side chain, which exposed the hydrophobic, fluorine-containing groups to the surface and made them repel water.

"The process can be reversed by drying the surface," Wynne said.

Anne Buckley | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>