Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VCU engineers develop new polymer

03.05.2005


New coating becomes water repellant when wet; applications include medical diagnostic equipment



Virginia Commonwealth University chemical engineering team has developed a novel material that becomes water repellent when wet, setting the stage for advances in engineering, medicine and diagnostics.

In the April 26, 2005, issue of the journal Langmuir, a publication of the American Chemical Society, Kenneth J. Wynne, Ph.D., a professor in the VCU School of Engineering’s Department of Chemical Engineering, and Umit Makal, a graduate student at VCU, created a enigmatic polymer that is hydrophilic, or water loving, when dry, and hydrophobic, or water resistant, when wet; opposite of most materials.


Makal drew an analogy of the research to a drop of water in a Teflon-coated pan. "Water in such a pan just rolls off," he said. "On our surface, when the pan is dry, water just loves the surface … it tries to stick to the surface."

"This discovery runs counter to intuition," Wynne said. "Water-induced hydrophobic surfaces may lead to applications for many things, including the testing of bodily fluids, switching devices, drag-reducing coatings and many others.

"Sometimes an engineer wants to guide the flow, or turn off tiny streams of fluid, such as blood, in a test tube, and this kind of phenomenon could be useful in creating channels for that purpose."

Wynne and Makal actually were working to create antimicrobial coatings by incorporating a molecule called hydantoin into fluorine-containing polymer chains. Makal was testing the behavior of water on one of these coatings and observed that the water drops were spreading, wetting the surface.

"After we took the drop off and put it back again, it started hating the water," Makal said. "The surface became water repellent where the original drop of water had been."

Wynne and Makal concluded that the change was caused by a rearrangement of the polymer side chain, which exposed the hydrophobic, fluorine-containing groups to the surface and made them repel water.

"The process can be reversed by drying the surface," Wynne said.

Anne Buckley | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Materials Sciences:

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

nachricht A rhodium-based catalyst for making organosilicon using less precious metal
22.06.2017 | Tokyo Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>