Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big hopes for tiny, new hydrogen storage material

22.03.2005


Researchers at the Department of Energy’s Pacific Northwest National Laboratory are taking a new approach to "filling up" a fuel cell car with a nanoscale solid, hydrogen storage material. Their discovery could hasten a day when our vehicles will run on hydrogen-powered, environmentally friendly fuel cells instead of gasoline engines.



The challenge, of course, is how to store and carry hydrogen. Whatever the method, it needs to be no heavier and take up no more space than a traditional gas tank but provide enough hydrogen to power the vehicle for 300 miles before refueling.

One approach is to find a solid chemical material that can hold and then release hydrogen as needed. Recently, PNNL researchers Tom Autrey and Anna Gutowska found a way to release hydrogen from a solid compound almost 100 times faster than was previously possible.


They will present their findings at the American Physical Society Meeting in Los Angeles on March 21, as part of The Grand Challenge of Hydrogen Storage symposium.

"The compound ammonia borane is known to release hydrogen at temperatures below 80 degrees Celsius, but the rate of release is extremely slow," said Autrey. "In the nanophase, the hydrogen comes off very fast -- approximately 100 times faster compared to conventional bulk ammonia borane."

The PNNL team used a nanoscale mesoporous silica material as scaffolding for ammonia borane to achieve a high rate of hydrogen release at a lower temperature than is found at the conventional scale. A lower temperature reaction, 80 degrees Celsius (170 degrees Fahrenheit), or below, is important because additional energy is not required to maintain the reaction.

To transform the ammonia borane to a nanomaterial, scientists dissolve the solid compound in a solvent and then add the solution to the mesoporous support material.

Capillary action of the porous material pulls the ammonia borane into the pores of the support. When the solvent is removed, nanosized pores filled with ammonia borane are left. Each pore is about 6.5 nanometers in diameter.

The nanoscience approach to using ammonia borane as a storage material exceeds DOE’s weight and volume storage goals for 2010. As a bonus, it also avoids the volatile chemicals produced at the bulk scale.

"We found no detectable borazine, which is harmful to fuel cells, produced by the reaction in the mesoporous materials," said Autrey.

Based on computational thermodynamic analysis, researchers believe the process may eventually be designed to be reversible, which would allow the storage material to be regenerated and provide a sustainable hydrogen storage compound with a longer lifetime. A patent is pending on this process for hydrogen storage.

Susan Bauer | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Materials Sciences:

nachricht Gelatine instead of forearm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Computers create recipe for two new magnetic materials
18.04.2017 | Duke University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>