Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big hopes for tiny, new hydrogen storage material

22.03.2005


Researchers at the Department of Energy’s Pacific Northwest National Laboratory are taking a new approach to "filling up" a fuel cell car with a nanoscale solid, hydrogen storage material. Their discovery could hasten a day when our vehicles will run on hydrogen-powered, environmentally friendly fuel cells instead of gasoline engines.



The challenge, of course, is how to store and carry hydrogen. Whatever the method, it needs to be no heavier and take up no more space than a traditional gas tank but provide enough hydrogen to power the vehicle for 300 miles before refueling.

One approach is to find a solid chemical material that can hold and then release hydrogen as needed. Recently, PNNL researchers Tom Autrey and Anna Gutowska found a way to release hydrogen from a solid compound almost 100 times faster than was previously possible.


They will present their findings at the American Physical Society Meeting in Los Angeles on March 21, as part of The Grand Challenge of Hydrogen Storage symposium.

"The compound ammonia borane is known to release hydrogen at temperatures below 80 degrees Celsius, but the rate of release is extremely slow," said Autrey. "In the nanophase, the hydrogen comes off very fast -- approximately 100 times faster compared to conventional bulk ammonia borane."

The PNNL team used a nanoscale mesoporous silica material as scaffolding for ammonia borane to achieve a high rate of hydrogen release at a lower temperature than is found at the conventional scale. A lower temperature reaction, 80 degrees Celsius (170 degrees Fahrenheit), or below, is important because additional energy is not required to maintain the reaction.

To transform the ammonia borane to a nanomaterial, scientists dissolve the solid compound in a solvent and then add the solution to the mesoporous support material.

Capillary action of the porous material pulls the ammonia borane into the pores of the support. When the solvent is removed, nanosized pores filled with ammonia borane are left. Each pore is about 6.5 nanometers in diameter.

The nanoscience approach to using ammonia borane as a storage material exceeds DOE’s weight and volume storage goals for 2010. As a bonus, it also avoids the volatile chemicals produced at the bulk scale.

"We found no detectable borazine, which is harmful to fuel cells, produced by the reaction in the mesoporous materials," said Autrey.

Based on computational thermodynamic analysis, researchers believe the process may eventually be designed to be reversible, which would allow the storage material to be regenerated and provide a sustainable hydrogen storage compound with a longer lifetime. A patent is pending on this process for hydrogen storage.

Susan Bauer | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>